首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low energy external bremsstrahlung (EB) photons were used to estimate the K shell photoelectric parameters; the K shell photoelectric cross section at the K edge, the K shell binding energy, the K shell jump ratio, the K shell jump factors, the Davisson-Kirchner ratio and the K shell oscillator strength for dysprosium (Dy), ytterbium (Yb) and tungsten (W) atoms. The EB photons are produced in the nickel (Ni) target by using the beta particles from a weak beta source of 90Sr–90Y. These photons are made to fall on these elemental targets of our interest and the transmitted spectrum is measured using GMX 10P HPGe detector coupled to an 8K multichannel analyzer. The sharp decrease at the K edge in the measured spectrum is used to determine the K shell photoelectric parameters of these elements. The experimental results are in good agreement with the theoretical values.  相似文献   

2.
The fusion reactions are studied in the central collisions 82Se+ + 134Ba and 82Se+ + 138Ba by the improved isospin-dependent quantum molecular-dynamics model, where the nucleus 138Ba has a closed neutron shell N = 82 . Comparing the shell correction energies and fusion probabilities of these two reactions with the ones of other asymmetric or more symmetric reaction systems that form the same compound nuclei, we find the dependence of the fusion reaction on the nuclear shell structure of the colliding nuclei. The experimental data of the fusion probabilities are described well by the present model. The result suggests that the neutron shell closure N = 82 promotes fusion.  相似文献   

3.
Core–shell nanoparticles are known to form in binary systems using a one‐step gas‐condensation deposition process where a large, positive enthalpy of mixing provides the driving force for phase separation and a difference in surface energy between component atoms creates a preferential surface phase leading to a core–shell structure. Here, core–shell nanoparticles have been observed in systems with enthalpy as low as ?5 kJ mol?1 and a surface energy difference of 0.5 J m?2 (Mo–Co). This suggests that surface energy dominates at the nanoscale and can lead to phase separation in nanoparticles. The compositions and size dependence of the core–shell structures are also compared and no core–shell structures are observed below a critical size of 8 nm.  相似文献   

4.
Indium phosphide (InP) quantum dots (QDs) are ideal substitutes for widely used cadmium-based QDs and have great application prospects in biological fields due to their environmentally benign properties and human safety. However, the synthesis of InP core/shell QDs with biocompatibility, high quantum yield (QY), uniform particle size, and high stability is still a challenging subject. Herein, high quality (QY up to 72%) thick shell InP/GaP/ZnS core/shell QDs (12.8 ± 1.4 nm) are synthesized using multiple injections of shell precursor and extension of shell growth time, with GaP serving as the intermediate layer and 1-octanethiol acting as the new S source. The thick shell InP/GaP/ZnS core/shell QDs still keep high QY and photostability after transfer into water. InP/GaP/ZnS core/shell QDs as fluorescence labels to establish QD-based fluorescence-linked immunosorbent assay (QD-FLISA) for quantitative detection of C-reactive protein (CRP), and a calibration curve is established between fluorescence intensity and CRP concentrations (range: 1–800 ng mL−1, correlation coefficient: R2 = 0.9992). The limit of detection is 2.9 ng mL−1, which increases twofold compared to previously reported cadmium-free QD-based immunoassays. Thus, InP/GaP/ZnS core/shell QDs as a great promise fluorescence labeling material, provide a new route for cadmium-free sensitive and specific immunoassays in biomedical fields.  相似文献   

5.
Energy spectra andelectric dipole transitions ofN=7 isotones are studied by shell model calculations with isospin dependent kinetic energies for s-d shell orbits. The ground states of10Li and9He are predicted. Electric dipole transitions in13C and11Be are studied by using the realistic single-particle wave functions in Woods-Saxon potential.JSPS Fellow for Japanese Junior Scientists.  相似文献   

6.
Spin and temperature dependence of the fission and particle emission is studied for194Hg. The compound nucleus is described using the Strutinsky shell correction approach extended for finite angular momenta and temperature. The shell corrections to the potential energy, free energy and the angular momentum are calculated using the Woods-Saxon average field. Results are compared with the experimental data and show a good qualitative agreement. It is found that the inclusion of the shell effects is necessary to understand the decay properties of194Hg even for temperatures as high as 1.5–2.0 MeV.  相似文献   

7.
Energy shell corrections are derived for the nucleus238U by means of the new shell correction technique developed for finite depth single-particle potentials and exploiting only the bound states. The results are compared with those obtained by the traditional method.  相似文献   

8.
Stripping and pickup reactions are performed and show the configuration for the lowest 3?state (7.62MeV) to be mainly a hole in the 1p shell the next 3?level (8.36 MeV) is mainly promoted into the 2p-1f shell.  相似文献   

9.
The (3He, n) reaction on 16O and 18O has been used to study low-spin states in 18Ne and 20Ne up to Ex ≈ 8 and 20 MeV, respectively. The measured neutron angular distributions have been analysed using DWBA. By a comparison with shell-model calculations in the (s, d) shell it is found that most of the two-proton transfer strength can be explained within that shell. Important contributions, however, from the (f, p) shell in low-lying negative parity states are also present.  相似文献   

10.
Two-proton-two-neutron correlations are studied in psd and fp shell nuclei in the frame of the aligned scheme approximation. Four-particle rotational states are obtained in terms of linear combinations of projected aligned Slater determinants and the resulting excitation energies and wave functions are compared with those of elaborate shell-model calculations. The close agreement obtained both for single j-shell and complete shell configuration spaces shows that rotational or quasi-rotational states are almost entirely generated by aligned configurations. The lowest four-particle states obtained in one j-shell can be explained as the rotational spectrum of an oblate intrinsic state. The lowest four-particle states of 16O, 20Ne, 44Ti and 60Zn, calculated in a major shell, correspond to the rotational spectrum of a prolate intrinsic state and fit the existing data. Higher states are the result of a mixed deformation.  相似文献   

11.
In the present report, bare CdO and CdO/MnO2 core/shell nanostructures of various cores and different shell sizes were synthesized using co‐precipitation method. The phase, size, shape and structural details of the bare CdO and CdO/MnO2 nanostructures were investigated by X‐ray diffraction, transmission electron microscopy (TEM), and Raman spectroscopy measurements. TEM micrographs confirm the formation of core/shell nanostructures. The presence of CdO (core) and MnO2 (shell) crystal phases was determined by analyzing the Raman data of bare CdO and CdO/MnO2 core/shell nanostructures. The Raman spectra of bare CdO nanostructures contain one broad intense convoluted envelop of three bands in the spectral range of 200–500 cm−1 and a weaker band located at ~940 cm−1. The intensity of these two Raman bands is decreased with the increase of shell size and disappeared completely for the shell size 5.3 ± 1 nm. Further, two new Raman bands appeared at ~451 and ~665 cm−1 for the shell size 1.3 ± 0.1 nm. These two Raman bands are assigned to the deformation of Mn–O–Mn and Mn–O stretching modes of MnO2. The intensity of these two Raman bands is enhanced with the increase of shell size and attains a maximum value for the shell size 5.3 ± 1 nm. The disappearance of characteristics Raman bands of CdO phase and the appearance of characteristics Raman bands corresponding to MnO2 phase for nanostructures of shell size 5.3 ± 1 nm authenticate the presence of CdO as core and MnO2 as shell in the core/shell nanostructures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Eu3+ doped ZnO nanoparticles are known to have significance extent of surface Eu3+ ions due to a large difference in ionic radii. Effect of such Eu3+ ions on the luminescence properties of ZnO:Eu nanoparticles has been understood from the luminescence studies of ZnO:Eu nanoparticles covered with Y2O3 shell. Based on the asymmetric ratio of luminescence and extent of energy transfer, it is established that when ZnO:Eu nanoparticles are covered with Y2O3 shell, a part of Eu3+ ions present with ZnO:Eu core migrate to Y2O3 shell and occupy Y3+ lattice positions.  相似文献   

13.
14.
The effective interaction of two valence nucleons in s-d shell is calculated for the Tabakin and the Mongan separable potentials. The resulting matrix elements are compared in detail with similar quantities obtained for local potentials. The differences observed are explained by various on energy shell behaviour of the respective free scattering amplitudes. Also the effect of various choices of the Pauli operator is studied and the resulting spectra of the18O an18F nuclei are compared.  相似文献   

15.
This paper reports on the 1H(28Ne,28Ne) and 1H(28Ne,27Ne) reactions studied at intermediate energy using a liquid hydrogen target. From the cross section populating the first 2+ excited state of 28Ne, and using the previously determined B(E2) value, the neutron quadrupole transition matrix element has been calculated to be Mn=13.8 ±3.7 fm2. In the neutron knock-out reaction, two low-lying excited states were populated in 27Ne. Only one of them can be interpreted by the sd shell model while the additional state may intrude from the fp shell. These experimental observations are consistent with the presence of fp shell configurations at low excitation energy in 27,28Ne nuclei caused by a vanishing N=20 shell gap at Z=10.  相似文献   

16.
Double differential cross sections for total δ-electron and K shell δ-electron emission in two angles 45° and 135° and energies 200 eV–7 keV are measured with 6 MeV p on Ar. The cross sections for K shell δ-electron emission are compared with recent calculations in PWBA with an OPM effective atomic potential5 and in SCA with an effective charge Coulomb potential12.  相似文献   

17.
Mass spectrometer measurements of the neutron rich sodium isotopes show a sudden increase at 31Na in the values of the two-neutron separation energies. The spherical shell model naturally predicts a sudden decrease at 32Na after the N = 20 shell closure. We propose that the explanation for this disagreement lies in the fact that sodium isotopes in this mass region are strongly deformed due to the filling of negative parity orbitais from the 1f72 shell. Hartree-Fock calculations are presented in support of this conjecture.  相似文献   

18.
CaMoO4:Pr(core), CaMoO4:Pr@CaMoO4 (core/shell) and CaMoO4:Pr@CaMoO4@SiO2 (core/shell/shell) nanoparticles were synthesized using polyol method. X-ray diffraction (XRD), thermogravimatric analysis (TGA), UV–vis absorption, optical band gap energy analysis, Fourier transform infrared (FTIR), FT-Raman and photoluminescence (PL) spectroscopy were employed to investigate the structural and optical properties of the synthesized core and core/shell nanoparticles. The results of the XRD indicate that the obtained core, core/shell and core/shell/shell nanoparticles crystallized well at ~150 °C in ethylene glycol (EG) under urea hydrolysis. The growth of the CaMoO4 and SiO2 shell (~12 nm) around the CaMoO4:Pr core nanoparticles resulted in an increase of the average size of the nanopaticles as well as in a broadening of their size distribution. These nanoparticles can be well-dispersed in distilled water to form clear colloidal solutions. The photoluminescence spectra of core, core/shell and core/shell/shell nanoparticles show the characteristic charge transfer emission band of MoO4 2? (533 nm) and Pr3+ 4f2?→?4f2, with multiple strong 3H4?→?3P2, 1D2?→?3H4 and 3P0?→?3?F2 transitions located at ~490, 605 and 652 nm, respectively. The emission intensity of the CaMoO4:Pr@CaMoO4 core/shell and CaMoO4:Pr@CaMoO4@SiO2 core/shell/shell nanoparticles increased ~4.5 and 1.7 times,respectively, with respect to those of CaMoO4:Pr core nanoparticles. This indicates that a significant amount of nonradiative centers existing on the surface of CaMoO4:Pr@CaMoO4 core/shell nanoparticles can be eliminated by the shielding effect of CaMoO4 shells.  相似文献   

19.
Coulomb energies of nuclei have been calculated using a recently introduced relativistic nuclear shell model1). The results are very close to those of the usual non-relativistic, isotropic harmonic oscillator shell model, showing the most deviation for heavy elements such as lead.  相似文献   

20.
The isospin dependence of shell closure phenomena is studied for light neutron-rich nuclei within a microscopic self-consistent approach using the Gogny force. Introducing configuration mixing, 32Mg is found to be dynamically deformed, although the N = 20 spherical shell closure persists at the mean-field level for all N = 20 isotones. In contrast, the N = 28 spherical shell closure is found to disappear for N - Z≥ 10 whereas deformed shell closures are preserved and lead to shape coexistence in 44 S. Configuration mixing shows that the ground state of this nucleus is triaxially deformed. The first 2+ excitation energy Ex = 1.46 MeV and the reduced transition probability B(E2;0+ gs→ 2+ 1)= 420 e 2 fm 4 obtained with our approach are in good agreement with experimental data. Received: 26 July 2000 / Accepted: 30 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号