首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. A》2006,359(6):723-727
Optical limitation in a 2D nonlinear photonic crystal (NPC) has been studied in this Letter. Since the optical limitation is due to Bragg scattering induced by the variation of nonlinear refractive index, it is sure that the optical limitation can be realized in nonlinear photonic crystal. The light propagation characteristics in a two-dimensional nonlinear photonic crystal with triangular lattice has been calculated by using the finite-difference time-domain algorithm, which is constructed by placing certain number of nonlinear dielectric rods in a linear photonic crystal. The optical limiting effects at 1.300 and 0.504 μm have been obviously obtained for TE polarization and TM polarization, respectively.  相似文献   

2.
In this paper theoretical and experimental results regarding discrete light propagation in photonic liquid crystal fibres (PLCFs) are presented. Particular interest is focused on tunability of the beam guidance obtained due to the variation in either external temperature or optical power (with assumption of thermal nonlinearity taking place in liquid crystals). Highly tunable (discrete) diffraction and thermal self-(de)focusing are studied and tested in experimental conditions. Specifically, spatial light localization and/or delocalization due to the change in tuning parameters are demonstrated, with possibility of discrete spatial (gap) soliton propagation in particular conditions. Results of numerical simulations (performed for the Gaussian beams of different widths and wavelengths) have been compared to those from experimental tests performed in the PLCFs of interest. Owning to the limit of experimental means, direct qualitative comparison was not quite accessible. Nevertheless, a qualitative agreement between theoretical and experimental data (obtained in analogous conditions) has been achieved, suggesting a compact and widely-accessible platform for the study of tunable linear (and nonlinear) discrete light propagation in two-dimensional systems. Proposed photonic structures are of a great potential for all-optical beam shaping and switching.  相似文献   

3.
We report on our recent theoretical and experimental studies of three-dimensional (3D) photonic lattice structures which are established in a bulk nonlinear crystal by employing different optical induction techniques. These 3D photonic lattices bring about new opportunities for controlling the flow of light via coupling engineering originated from the lattice modulation along the beam propagation direction. By fine tuning the lattice parameters, we observe a host of unusual behaviors of beam propagation in such reconfigurable 3D lattices, including enhanced discrete diffraction, light tunneling inhibition—better known as coherent destruction of tunneling (CDT), anomalous diffraction, negative refraction, as well as CDT-based image transmission. In addition, we propose and demonstrate a new way of creating 3D ionic-type photonic lattices by controlled Talbot effect.  相似文献   

4.
A new structure based on a semi-circular photonic crystal is proposed to achieve asymmetric light propagation. The semi-circular photonic crystal structure proposed in this paper is a deformation of a two-dimensional conventional square photonic crystal. Through the directional bandgap of the semi-circular photonic crystal, the light from one direction can transfer to the other side, but the light from the opposite direction cannot. A high contrast ratio is obtained by designing the constitutive parameters of the photonic crystal and choosing the suitable light frequency. This structure promises a significant potential in optical integration and other areas.  相似文献   

5.
The optical transmission properties of a one-dimensional Drude model photonic crystal are investigated. The linear wave propagation is studied by the transfer matrix method. Using a delta-function approximation a nonlinear 2-d map is obtained and used to explore the global transmission properties of nonlinear wave propagation in this system. Inclusion of a frequency-dependent refractive index represented by the Drude model results in a considerable modification of the characteristics of the linear and nonlinear wave propagation of the one-dimensional photonic crystal.  相似文献   

6.
Ndi FC  Toulouse J  Hodson T  Prather DW 《Optics letters》2005,30(17):2254-2256
Silicon photonic crystals offer new ways of controlling the propagation of light as well as new tools for the realization of high-density optical integration on monolithic substrates. However, silicon does not possess the strong nonlinearities that are commonly used in the dynamic control of optical devices. Such dynamic control is nevertheless essential if silicon is to provide the higher levels of functionality that are required for optical integration. We demonstrate that the combination of the refractive index change caused by the presence of photoexcited carriers, or so-called plasma dispersion, and photonic crystal properties such as photonic bandgaps, constitutes a powerful tool for active control of light in silicon integrated devices. We show close to 100% modulation depth near the photonic crystal band edge.  相似文献   

7.
一维光子晶体的基本周期结构及其禁带特征   总被引:28,自引:7,他引:21  
陈慰宗  申影  忽满利  卜涛  刘军 《光子学报》2001,30(12):1453-1456
本文采用光学导纳特征矩阵方法讨论了光波在一维分层介质的传播特性,分析了一维光子晶体的基本周期结构对光子禁带的特征的影响,指出了这种特性的应用.  相似文献   

8.
In recent years, photonic lattices fabricated by the femtosecond laser direct writing technique in fused silica have emerged as the tool of choice for the experimental investigation of light propagation in discrete optical systems with Kerr nonlinearity. In this article, we review the recent results of our research conducted in this field and present our latest findings on the reflection of transversely propagating light at kinks in planar photonic lattices with detuned pivotal site.  相似文献   

9.
Based on colloidal crystals of various dimensionality, hybrid metal-dielectric plasmonic-photonic heterocrystals have been prepared. It has been shown that the spectra of optical transmission of heterocrystals are mostly controlled by the sum of contributions of composing plasmonic and photonic crystals. At the same time, there are a number of phenomena caused by the mutual effect of heterostructure components, which lead to a deviation of observed optical properties from the linear superposition of responses of these crystals. In particular, it has been found that the anomalous transmission controlled by the plasmonic crystal decreases with increasing the dimensionality of the photonic crystal attached to it. At the same time, light reflection on a metallized surface changes light diffraction in photonic crystals and leads to Fabry-Perot oscillation amplification. It has been assumed that an intermediate layer is formed, in which Bloch modes of the photonic crystal and surface plasmon-polaritons of the plasmonic crystal are hybridized.  相似文献   

10.
The study of wave propagation in periodic systems is at the frontiers of physics, from fluids to condensed matter physics, and from photonic crystals to Bose-Einstein condensates. In optics, a typical example of periodic system is a closely-spaced waveguide array, in which collective behavior of wave propagation exhibits many intriguing phenomena that have no counterpart in homogeneous media. Even in a linear waveguide array, the diffraction property of a light beam changes due to evanescent coupling between nearby waveguide sites, leading to normal and anomalous discrete diffraction. In a nonlinear waveguide array, a balance between diffraction and self-action gives rise to novel localized states such as spatial “discrete solitons” in the semi-infinite (or total-internal-reflection) gap or spatial “gap solitons” in the Bragg reflection gaps. Recently, in a series of experiments, we have “fabricated” closely-spaced waveguide arrays (photonic lattices) by optical induction. Such photonic structures have attracted great interest due to their novel physics, link to photonic crystals, as well as potential applications in optical switching and navigation. In this review article, we present a brief overview on our experimental demonstrations of a number of novel spatial soliton phenomena in light-induced photonic bandgap structures, including self-trapping of fundamental discrete solitons and more sophisticated lattice gap solitons. Much of our work has direct impact on the study of similar discrete phenomena in systems beyond optics, including sound waves, water waves, and matter waves (Bose-Einstein condensates) propagating in periodic potentials.   相似文献   

11.
The study of wave propagation in periodic systems is at the frontiers of physics, from fluids to condensed matter physics, and from photonic crystals to Bose-Einstein condensates. In optics, a typical example of periodic system is a closely-spaced waveguide array, in which collective behavior of wave propagation exhibits many intriguing phenomena that have no counterpart in homogeneous media. Even in a linear waveguide array, the diffraction property of a light beam changes due to evanescent coupling between nearby waveguide sites, leading to normal and anomalous discrete diffraction. In a nonlinear waveguide array, a balance between diffraction and self-action gives rise to novel localized states such as spatial “discrete solitons” in the semi-infinite (or total-internal-reflection) gap or spatial “gap solitons” in the Bragg reflection gaps. Recently, in a series of experiments, we have “fabricated” closely-spaced waveguide arrays (photonic lattices) by optical induction. Such photonic structures have attracted great interest due to their novel physics, link to photonic crystals, as well as potential applications in optical switching and navigation. In this review article, we present a brief overview on our experimental demonstrations of a number of novel spatial soliton phenomena in light-induced photonic bandgap structures, including self-trapping of fundamental discrete solitons and more sophisticated lattice gap solitons. Much of our work has direct impact on the study of similar discrete phenomena in systems beyond optics, including sound waves, water waves, and matter waves (Bose-Einstein condensates) propagating in periodic potentials.  相似文献   

12.
The dynamics of matter waves in linear and nonlinear optical lattices subject to a spatially uniform linear force is studied both analytically and numerically. It is shown that by properly designing the spatial dependence of the scattering length it is possible to induce long-living Bloch oscillations of gap-soliton matter waves in optical lattices. This occurs when the effective nonlinearity and the effective mass of the soliton have opposite signs for all values of the crystal momentum in the Brillouin zone. The results apply to all systems modeled by the periodic nonlinear Schr?dinger equation, including propagation of light in photonic and photorefractive crystals with tilted band structures.  相似文献   

13.
We review the basic light‐matter interactions and optical properties of chip‐based single photon sources, that are enabled by integrating single quantum dots with planar photonic crystals. A theoretical framework is presented that allows one to connect to a wide range of quantum light propagation effects in a physically intuitive and straightforward way. We focus on the important mechanisms of enhanced spontaneous emission, and efficient photon extraction, using all‐integrated photonic crystal components including waveguides, cavities, quantum dots and output couplers. The limitations, challenges, and exciting prospects of developing on‐chip quantum light sources using integrated photonic crystal structures are discussed.  相似文献   

14.
A graded index lens made from graded 2D photonic crystal has been designed by the means of the Finite Difference Time Domain (FDTD) method. The gradient of index has been obtained by varying the filling factor of a flat slab of photonic crystal in the direction perpendicular to that of the propagation of the electromagnetic field. This gradient has been designed in such a way that the flat slab focuses a plane wave. As only a few layers are necessary, graded photonic crystals show their ability to efficiently control the propagation of light and may apply to various photonic devices, from the microwave range to the optical domain.  相似文献   

15.
We consider a model for a one-dimensional photonic crystal formed by a succession of nonlinear Kerr-type equidistant spaceless interfaces immersed in a linear medium. We calculate analytically the band structure of this system as a function of the incident wave intensity, and find two main tendencies: the appearance of prohibited bands, and the separation and narrowing of these bands. We consider as well a finite version of this photonic crystal for a limited number of alternating linear and non linear set of stacks for which we calculate reflectance as a function of the electromagnetic wave intensity, band index and number of periods. A system with these features can be constructed by alternating very thin slabs of a nonlinear soft matter material with thicker solid films, which can be used to design a device to control light propagation for specific wavelength intervals and light intensities of the same propagating signal.  相似文献   

16.
Optics and Spectroscopy - The problem of the propagation dynamics of three-dimensional optical Airy pulses (light bullets) in a photonic crystal with carbon nanotubes is considered. It is...  相似文献   

17.
We have investigated the nonlinear propagation of light in photonic crystal fibers filled with nematic liquid crystals. We analyzed a configuration with a periodic modulation of the refractive index corresponding to a matrix of waveguides. Matrices of coupled waveguides allow observing a variety of new phenomena both for low power light beam propagation and with an existence of nonlinear effects. The opportunity for the creation of solitary waves caused by the interplay between diffraction and nonlinear effects in these kinds of fibers is investigated. At low power the propagating light beam spreads as it couples to more and more waveguides. When the intensity is increased the light modifies the refractive index distribution, inducing a defect in the periodic structure. The creation of such a defect can lead to a situation in which the light becomes self-localized and its diffractive broadening is eliminated. Eventually, in the case of positive Kerr-type nonlinearity, a discrete soliton can be created. In the case of negative nonlinearity the refractive index decreases with the optical power and can lead to bandgap shifting. The incident beam, with a frequency initially within the bandgap, is then turned outside the bandgap resulting in the changing of the propagation effect for the discrete diffraction effect. As a consequence the delocalization of the light can be observed. Presented at 9-th International Workshop on Nonlinear Optics Application, NOA 2007, May 17–20, 2007, Świnoujscie, Poland  相似文献   

18.
We investigate the effect of disorder and mechanical deformation on two- dimensional photonic crystal waveguide. The dispersion characteristics and transmittance of the waveguide are studied by using the finite element method. Results show that the geometric change of the dielectric material perpendicular to the light propagation direction has a larger influence on the waveguide characteristics than that parallel to the light propagation direction. Mechanical deformation has an obvious influence on the performance of the waveguide. In particular, longitudinal deformed structure exhibits distinct optical characteristics from the ideal one. Studies on this work will provide useful guideline to the fabrications and practical applications based on photonic crystal waveguides.  相似文献   

19.
Optical trirefringence in photonic crystal waveguides   总被引:5,自引:0,他引:5  
We demonstrate that 2D photonic crystals can possess optical trirefringence in which there are six field orientations for which linear incident light is not perturbed on reflection or transmission. Such a property is rigorously forbidden in homogeneous nonmagnetic dielectrics which can possess only optical birefringence. We experimentally demonstrate this phenomena in silicon-based mesostructures formed from photonic crystal waveguides embedded in a Fabry-Perot cavity. Multirefringence is controlled by the presence of submicron dielectric patterning and is well explained by an exact scattering matrix theory.  相似文献   

20.
Photonic crystals form an exciting new class of optical materials that can greatly affect optical propagation and light emission. As the relevant length scale is smaller than the wavelength of light, sub-wavelength detection forms an important ingredient to obtain full insight in the physical properties of photonic crystal structures. Spatially resolved near-field measurements allow the observation of phenomena that remain hidden to diffraction-limited far-field investigations. Here, we present near-field investigations in both collection and illumination modes that highlight the power of local studies. We show how propagation losses are unambiguously determined and that light detected in far-field transmission can actually contain contributions from different, sometimes unexpected, local scattering phenomena. Simulations are used to support our findings. Furthermore, it is shown that local coupling of light to a thick three-dimensional photonic crystal is position-dependent and that the spatial distribution of the coupling efficiency itself is frequency-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号