首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salter TL  Green FM  Faruqui N  Gilmore IS 《The Analyst》2011,136(16):3274-3280
Two ambient ionisation techniques, desorption electrospray ionisation (DESI) and plasma assisted desorption ionisation (PADI), have been used to analyse personal care products (PCPs) on fixed fibroblast cell surfaces. The similarities and differences between the two techniques for this type of analysis have been explored in various ways. Here, we show the results of DESI and PADI analysis of individual PCP ingredients as well as the analysis of these as complex creams on model skin surfaces, with minimal sample preparation. Typically, organosiloxanes and small molecules were detected from the creams. A study of the morphological damage of the fibroblast cells by the two ionisation techniques showed that for a less than 10% reduction in cell number, acquisition times should be limited to 5 s for PADI, which gives good signal levels; with DESI, the morphological damage was negligible. The operating parameters for the plasma source were optimised, and it was also found that the parameters could be modified to vary the relative intensity of different ions in the mass spectrum.  相似文献   

2.
Desorption electrospray ionisation (DESI) has been successfully combined with a hybrid quadrupole time-of-flight mass spectrometer to provide mass spectra and product ion mass spectra of active ingredients formulated in pharmaceutical tablets, gels and ointments. Accurate mass data has been obtained from the DESI mass spectra and of the product ion fragments of selected ions, greatly enhancing the selectivity and information content of the experiment. This accurate mass information only takes seconds to acquire since the DESI technique does not require any sample preparation or extraction prior to mass analysis.  相似文献   

3.
A novel method is reported for rapid protein identification by the analysis of tryptic peptides using desorption electrospray ionisation (DESI) coupled with hyphenated ion mobility spectrometry and quadrupole time-of-flight mass spectrometry (IMS/Q-ToF-MS). Confident protein identification is demonstrated for the analysis of tryptically digested bovine serum albumin (BSA), with no sample pre-treatment or clean-up. Electrophoretic ion mobility separation of ions generated by DESI allowed examination of charge-state and mobility distributions for tryptic peptide mixtures. Selective interrogation of singly charged ions allowed isobaric peptide responses to be distinguished, along with a reduction in spectral noise. The mobility-selected singly charged peptide responses were presented as a pseudo-peptide mass fingerprint (p-PMF) for protein database searching. Comparative data are shown for electrospray ionisation (ESI) of the BSA digest, without sample clean-up, from which confident protein identification could not be made. Implications for the robustness of the DESI method, together with potential insights into mechanisms for DESI of proteolytic digests, are discussed.  相似文献   

4.
Desorption electrospray ionisation (DESI) and neutral desorption/extractive electrospray ionisation (EESI) have been coupled to a hybrid quadrupole travelling-wave (T-Wave)-based ion mobility time-of-flight mass spectrometer for the direct accurate mass analysis of active ingredients formulated into pharmaceutical samples. The collision cross-section measurements of polyethylene glycol (PEG) excipients detected in one formulation were estimated and compared with published data. These estimated collision cross-sections of the PEG species showed good agreement with published data.  相似文献   

5.
The direct analysis of pharmaceutical formulations and active ingredients from non‐bonded reversed‐phase thin layer chromatography (RP‐TLC) plates by desorption electrospray ionisation (DESI) combined with ion mobility mass spectrometry (IM‐MS) is reported. The analysis of formulations containing analgesic (paracetamol), decongestant (ephedrine), opiate (codeine) and stimulant (caffeine) active pharmaceutical ingredients is described, with and without chromatographic development to separate the active ingredients from the excipient formulation. Selectivity was enhanced by combining ion mobility and mass spectrometry to characterise the desorbed gas‐phase analyte ions on the basis of mass‐to‐charge ratio (m/z) and gas‐phase ion mobility (drift time). The solvent composition of the DESI spray using a step gradient was varied to optimise the desorption of active pharmaceutical ingredients from the RP‐TLC plates. The combined RP‐TLC/DESI‐IM‐MS approach has potential as a rapid and selective technique for pharmaceutical analysis by orthogonal gas‐phase electrophoretic and mass‐to‐charge separation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Ambient mass spectrometry, pioneered with desorption electrospray ionization (DESI) technique, is of increasing interest in recent years. In this study, a corona discharge ionization source is adapted for direct surface desorption chemical ionization of compounds on various surfaces at atmospheric pressure. Ambient air, with about 60% relative humidity, is used as a reagent to generate primary ions such as H(3)O(+), which is then directed to impact the sample surface for desorption and ionization. Under experimental conditions, protonated or deprotonated molecules of analytes present on various samples are observed using positive or negative corona discharge. Fast detection of trace amounts of analytes present in pharmaceutical preparations, viz foods, skins and clothes has been demonstrated without any sample pretreatment. Taking the advantage of the gasless setup, powder samples such as amino acids and mixtures of pharmaceutical preparations are rapidly analyzed. Impurities such as sudan dyes in tomato sauce are detected semiquantitatively. Molecular markers (e.g. putrescine) for meat spoilage are successfully identified from an artificially spoiled fish sample. Chemical warfare agent stimulants, explosives and herbicides are directly detected from the skin samples and clothing exposed to these compounds. This provides a detection limit of sub-pg (S/N > or = 3) range in MS2. Metabolites and consumed chemicals such as glucose are detected successfully from human skins. Conclusively, surface desorption atmospheric pressure chemical ionization (DAPCI) mass spectrometry, without toxic chemical contamination, detects various compounds in complex matrices, showing promising applications for analyses of human related samples.  相似文献   

7.
This paper reports use of a combination of Fourier-transform infrared (FTIR) spectroscopic imaging and desorption electrospray ionization linear ion-trap mass spectrometry (DESI MS) for characterization of counterfeit pharmaceutical tablets. The counterfeit artesunate antimalarial tablets were analyzed by both techniques. The results obtained revealed the ability of FTIR imaging in non-destructive micro-attenuated total reflection (ATR) mode to detect the distribution of all components in the tablet, the identities of which were confirmed by DESI MS. Chemical images of the tablets were obtained with high spatial resolution. The FTIR spectroscopic imaging method affords inherent chemical specificity with rapid acquisition of data. DESI MS enables high-sensitivity detection of trace organic compounds. Combination of these two orthogonal surface-characterization methods has great potential for detection and analysis of counterfeit tablets in the open air and without sample preparation.  相似文献   

8.
We report high resolution spectra for the medium molecular weight proteins myoglobin and cytochrome-c obtained using a custom desorption electrospray ionisation (DESI) source coupled to a Bruker Daltonics 12 T Apex Qe Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). The DESI source was designed for accurate alignment and reproduction of critical geometric variables. A two axis motorised stage was included to enable automated rastering of the sample under the DESI plume. Spectra for the intact proteins have been obtained under single-acquisition conditions and a top-down analysis of cytochrome-c was performed using both collision induced dissociation (CID) and electron capture dissociation (ECD) of the isolated [M+15H]15+ charge state. The sequence coverage is comparable to that obtained using electrospray ionisation, demonstrating the utility of top-down protein analysis by DESI FTICR-MS.  相似文献   

9.
Novel sampling and detection methods using desorption electrospray ionization (DESI) are examined in the detection of explosives (RDX, TNT, HMX, and TNB) and agricultural chemicals (atrazine, alachlor and acetochlor) from aqueous matrices and authentic contaminated groundwater samples. DESI allows analysis of solid and liquid compounds directly from surfaces of interest with little or no sample preparation. Significant savings in analysis time and sample preparation are realized. The methods investigated here include (i) immediate analysis of filter paper wetted with contaminated water samples without further sample preparation, (ii) rapid liquid-liquid extraction (LLE), and (iii) analyte extraction from contaminated groundwater samples on-site using solid-phase extraction (SPE) membranes, followed by direct DESI analysis of the membrane. The wetted filter paper experiment demonstrates the maximum sample throughput for DESI analysis of aqueous matrices but has inadequate sensitivity for some of these analytes. Both the LLE and the SPE methods have adequate sensitivity. The resulting SPE membranes and/or small volume solvent extracts produced in these experiments are readily transported to off-site facilities for direct analysis by DESI. This realizes a significant reduction in the costs of sample shipping compared with those for typical liter-sized samples of groundwater. Total analysis times for these preliminary DESI analyses are comparable with or shorter than those for GC/MS and limits of detection approach environmental action levels for these compounds while maintaining a modest relative standard deviation. Tandem mass spectrometric data is used to provide additional specificity as needed.  相似文献   

10.
In this article, the effect of spray solvent on the analysis of selected lipids including fatty acids, fat‐soluble vitamins, triacylglycerols, steroids, phospholipids, and sphingolipids has been studied by two different ambient mass spectrometry (MS) methods, desorption electrospray ionization‐MS (DESI‐MS) and desorption atmospheric pressure photoionization‐MS (DAPPI‐MS). The ionization of the lipids with DESI and DAPPI was strongly dependent on the spray solvent. In most cases, the lipids were detected as protonated or deprotonated molecules; however, other ions were also formed, such as adduct ions (in DESI), [M‐H]+ ions (in DESI and DAPPI), radical ions (in DAPPI), and abundant oxidation products (in DESI and DAPPI). DAPPI provided efficient desorption and ionization for neutral and less polar as well as for ionic lipids but caused extensive fragmentation for larger and more labile compounds because of a thermal desorption process. DESI was more suitable for the analysis of the large and labile lipids, but the ionization efficiency for less polar lipids was poor. Both methods were successfully applied to the direct analysis of lipids from pharmaceutical and food products. Although DESI and DAPPI provide efficient analysis of lipids, the multiple and largely unpredictable ionization reactions may set challenges for routine lipid analysis with these methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Molecular images of documents were obtained by sequentially scanning the surface of the document using desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI‐MS), which was operated in either a gasless, solvent‐free or methanol vapor‐assisted mode. The decay process of the ink used for handwriting was monitored by following the signal intensities recorded by DAPCI‐MS. Handwritings made using four types of inks on four kinds of paper surfaces were tested. By studying the dynamic decay of the inks, DAPCI‐MS imaging differentiated a 10‐min old from two 4 h old samples. Non‐destructive forensic analysis of forged signatures either handwritten or computer‐assisted was achieved according to the difference of the contour in DAPCI images, which was attributed to the strength personalized by different writers. Distinction of the order of writing/stamping on documents and detection of illegal printings were accomplished with a spatial resolution of about 140 µm. A Matlab® written program was developed to facilitate the visualization of the similarity between signature images obtained by DAPCI‐MS. The experimental results show that DAPCI‐MS imaging provides rich information at the molecular level and thus can be used for the reliable document analysis in forensic applications. © 2013 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons, Ltd.  相似文献   

12.
A range of low molecular weight synthetic polymers has been characterised by means of desorption electrospray ionisation (DESI) combined with both mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Accurate mass experiments were used to aid the structural determination of some of the oligomeric materials. The polymers analysed were poly(ethylene glycol) (PEG), polypropylene glycol (PPG), poly(methyl methacrylate) (PMMA) and poly(alpha-methyl styrene). An application of the technique for characterisation of a polymer used as part of an active ingredient in a pharmaceutical tablet is described. The mass spectra and tandem mass spectra of all of the polymers were obtained in seconds, indicating the sensitivity of the technique.  相似文献   

13.
Desorption electrospray ionization mass spectrometry (DESI‐MS) requires little to no sample preparation and has been successfully applied to the study of biologically significant macromolecules such as proteins. However, DESI‐MS and other ambient methods that use spray desorption to process samples during ionization appear limited to smaller proteins with molecular masses of 25 kDa or less, and a decreasing instrumental response with increasing protein size has often been reported. It has been proposed that this limit results from the inability of some proteins to easily desorb from the surface during DESI sampling. The present study investigates the apparent mass dependence of the instrumental response observed during the DESI‐MS analysis of proteins using spray desorption collection and reflective electrospray ionization. Proteins, as large as 66 kDa, are shown to be quantitatively removed from surfaces by using spray desorption collection. However, incomplete dissolution and the formation of protein–protein and protein–contaminant clusters appear to be responsible for the mass‐dependent loss in sensitivity for protein analysis. Alternative ambient mass spectrometry approaches that address some of the problems encountered by spray desorption techniques for protein analysis are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The present work describes the methodology and investigates the performance of desorption electrospray ionization (DESI) combined with a triple quadrupole mass spectrometer for the quantitation of small drug molecules in human plasma. Amoxepine, atenolol, carbamazepine, clozapine, prazosin, propranolol and verapamil were selected as target analytes while terfenadine was selected as the internal standard common to each of the analytes. Protein precipitation of human plasma using acetonitrile was utilized for all samples. Limits of detection were determined for all analytes in plasma and shown to be in the range 0.2–40 ng/mL. Quantitative analysis of amoxepine, prazosin and verapamil was performed over the range 20–7400 ng/mL and shown to be linear in all cases with R2 >0.99. In most cases, the precision (relative standard deviation) and accuracy (relative error) of each method were less than or equal to 20%, respectively. The performance of the combined techniques made it possible to analyze each sample in 15 s illustrating DESI tandem mass spectrometry (MS/MS) as powerful tool for the quantitation of analytes in deproteinized human plasma. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Mass spectrometric methods, including matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS), on-line liquid chromatography/electrospray ionisation mass spectrometry (LC/ESI-MS), and nanospray ionisation/hybrid quadrupole time-of-flight mass spectrometry (nanoESI-QqTOFMS), were applied to characterize by mass fingerprinting the venom of the French Guyanese tarantula Theraphosa leblondi. Of these techniques direct nanoESI-QqTOFMS, which allowed the detection of 65 protonated molecules with high mass accuracy, appeared to give the best results. Three major peptides, TlTx1, TlTx2 and TlTx3, were sequenced using a combination of nanoESI-MS/MS and enzyme digestion/MS and MS/MS experiments. Each sequence was confirmed by automated Edman sequencing. In patch-clamp experiments these peptides were found to have a specific inhibitory effect on the voltage-dependent potassium channel, Kv4.2.  相似文献   

16.
The use of mass spectrometry (MS) to acquire molecular images of biological tissues and other substrates has developed into an indispensable analytical tool over the past 25 years. Imaging mass spectrometry technologies are widely used today to study the in situ spatial distributions for a variety of analytes. Early MS images were acquired using secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. Researchers have also designed and developed other ionization techniques in recent years to probe surfaces and generate MS images, including desorption electrospray ionization (DESI), nanoDESI, laser ablation electrospray ionization, and infrared matrix-assisted laser desorption electrospray ionization. Investigators now have a plethora of ionization techniques to select from when performing imaging mass spectrometry experiments. This brief perspective will highlight the utility and relative figures of merit of these techniques within the context of their use in imaging mass spectrometry.  相似文献   

17.
Ambient surface mass spectrometry is an emerging field which shows great promise for the analysis of biomolecules directly from their biological substrate. In this article, we describe ambient ionisation mass spectrometry techniques for the in situ analysis of intact proteins. As a broad approach, the analysis of intact proteins offers unique advantages for the determination of primary sequence variations and posttranslational modifications, as well as interrogation of tertiary and quaternary structure and protein‐protein/ligand interactions. In situ analysis of intact proteins offers the potential to couple these advantages with information relating to their biological environment, for example, their spatial distributions within healthy and diseased tissues. Here, we describe the techniques most commonly applied to in situ protein analysis (liquid extraction surface analysis, continuous flow liquid microjunction surface sampling, nano desorption electrospray ionisation, and desorption electrospray ionisation), their advantages, and limitations and describe their applications to date. We also discuss the incorporation of ion mobility spectrometry techniques (high field asymmetric waveform ion mobility spectrometry and travelling wave ion mobility spectrometry) into ambient workflows. Finally, future directions for the field are discussed.  相似文献   

18.
Identification of suspects via fingermark analysis is one of the mainstays of forensic science. The success in matching fingermarks, using conventional fingermark scanning and database searching, strongly relies on the enhancement method adopted for fingermark recovery; this in turn depends on the components present in the fingermarks, which will change over time. This work aims to develop a robust methodology for improved analytical detection of the fingermark components. For the first time, matrix‐assisted laser desorption/ionisation mass spectrometry imaging (MALDI‐MSI) has been used to image endogenous lipids from fresh and aged, groomed and ungroomed fingermarks. The methodology was initially developed using oleic acid which was detected along with its degradation products over a 7‐day period, at three different temperatures in a time‐course experiment. The optimised methodology was then transferred to the imaging analysis of real fingermark samples. Fingermark patterns were reconstructed by retrieving the m/z values of oleic acid and its degradation products. This allowed the three aged fingermarks to be distinguished. In order to prove that MALDI‐MSI can be used in a non‐destructive way, a simple washing protocol was adopted which returned a fingermark that could be further investigated with classical forensic approaches. The work reported here proves the potential and the feasibility of MALDI‐MSI for the forensic analysis of fingermarks, thus making it competitive with other MSI techniques such as desorption electrospray ionisation (DESI)‐MS. The feasibility of using MALDI‐MSI in fingermark ageing studies is also demonstrated along with the potential to be integrated into routine fingermark forensic analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
It is of sustainable interest to improve the sensitivity and selectivity of the ionization process, especially for direct analysis of complex samples without matrix separation. Herein, four ambient ionization methods including desorption atmospheric pressure chemical ionization (DAPCI), heat‐assisted desorption atmospheric pressure chemical ionization (heat‐assisted DAPCI), microwave plasma torch (MPT) and internal extractive electrospray ionization (iEESI) were employed for comparative analysis of the navel orange tissue samples by mass spectrometry. The volatile organic compounds (e.g. ethanol, vanillin, leaf alcohol and jasmine lactone) were successfully detected by non‐heat‐assisted DAPCI‐MS, while semi‐volatile organic compounds (e.g. 1‐nonanol and ethyl nonanoate) together with low abundance of non‐volatile organic compounds (e.g. sinensetin and nobiletin) were obtained by heat‐assisted DAPCI‐MS. Typical nonvolatile organic compounds [e.g. 5‐(hydroxymethyl)furfural and glucosan] were sensitively detected with MPT‐MS. Compounds of high polarity (e.g. amino acids, alkaloids and sugars) were easily profiled with iEESI‐MS. Our data showed that more analytes could be detected when more energy was delivered for the desorption ionization purpose; however, heat‐sensitive analytes would not be detected once the energy input exceeded the dissociation barriers of the analytes. For the later cases, soft ionization methods such as iEESI were recommended to sensitively profile the bioanalytes of high polarity. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
W Rao  DJ Scurr  J Burston  MR Alexander  DA Barrett 《The Analyst》2012,137(17):3946-3953
Desorption electrospray ionisation (DESI) mass spectrometry images usually contain a large amount of information that can be difficult to interpret in an objective manner. We explore the use of imaging multivariate analysis (MVA) on DESI images of protein spots and rat brain sections to automatically assign peaks and improve discrimination of spatially important features. DESI parameters were optimised on an ion trap mass spectrometer for (a) consistent imaging of dried single and mixture spots of insulin, myoglobin and BSA from a Permanox slide, and (b) to produce a MS image of rat brain coronal section at 100 μm resolution. Multivariate curve resolution (MCR), an imaging MVA technique was applied to these images after appropriate data binning. MCR analysis on DESI images of protein mixture spots allowed the multiply charged peaks of a number of proteins to be distinctly separated. Application of MCR to a DESI image of a rat brain coronal section deconvoluted the image into components that showed biologically important features. Further application of MCR to a subsection of the image produced a component that clearly separated out the substantia nigra region, which allowed us to produce a biochemical anatomy for this area of the brain. We have demonstrated the ability of imaging MVA to automatically and objectively analyse DESI images of standardised and complex biological samples, and have shown its capacity for detailed spatial profiling of biomolecules in specific morphological regions. We propose the routine use of this technique for future DESI imaging experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号