首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four new complexes, [Cu2(Bpca)2(L1)(H2O)2] · 3H2O (I), [Cu2(Bpca)2(L2)(H2O)2] (II), [Cu2(Bpca)2(L3)] · 2H2O (III), [Cu2(Bpca)2(L1)(H2O)] · 2H2O (IV) (Bpca = bis(2-pyridylcarbonyl)amido, H2L1 = glutaric acid, H2L2 = adipic acid, H2L3 = suberic acid, H2L4 = azelaic acid) have been synthesized and characterized by single-crystal X-ray diffraction methods (CIF files CCDC nos. 1432836 (I), 1432835 (II), 817411 (III), and 817412 (IV)), elemental analyses, IR spectra. Structural analyses reveal that compounds I, II, and IV have similar structures [Cu(Bpca)]+ units bridged by dicarboxylate forming dinuclear units, whereas the dinuclear of compound III are edge-shared through two carboxylate oxygen atoms of different suberate anions. Hydrogen bonds are response for the supramolecular assembly of compounds I to IV. The temperature-dependent magnetic property of III was also investigated in the temperature range of 2 to 300 K, and the magnetic behaviour suggests weak antiferromagnetic coupling exchange.  相似文献   

2.
The following new triphenylantimony(V) catecholate complexes bearing the protonated imine group are synthesized from the new sterically hindered 3,5-di-tert-butylpyrocatechols (6-(CH=N-o-(C6H4–NH2))-3,5-Cat)H2 (H2L1) and (6-(CH=N-o-(C6H4–OH))-3,5-Cat)H2 (H2L2) containing in position 6 the iminomethyl group bonded to the aniline or phenol substituent: (6-(CH=NH+-o-(C6H4–NH2))-3,5-Cat)SbPh3X (X = Br (I), OMe (III)) and (6-(CH=NH+-o-(C6H4–OH))-3,5-Cat)SbPh3X (X = Br (II), OMe (IV)). The molecular structure of complex III · CH 3 OH in the crystalline state is determined by X-ray diffraction analysis (CIF file CCDC no. 1554694). The electrochemical properties of complexes III and IV are studied by cyclic voltammetry.  相似文献   

3.
Four d 10-based complexes with chemical formulae {[Zn(L1)2(H2O)2(4,4′-Bipy)2] (I), {[Zn2(L1)4(Mi)] · 4H2O} (II), {[Zn(L1)2(Phen)] · H2O} (III) {[Cd(L1)2(Phen)] · 2H2O} (IV) (HL1 = p-hydroxy phenylacetic acid, 4,4′-Bipy = 4,4′-bipyridine, Phen = 1,10-phenanthroline, Mi = 1,4-bis(imidazol-1-yl)butane) have been synthesized and structurally characterized by single crystal X-ray diffraction (CIF files CCDC nos. 1047119 (I), 1047120 (II), 1047121 (III), 1047122 (IV)). The significant effect of assistant ligands and metal ions on assembly of I?IV has been demonstrated, which leads to the formation of distinct crystalline products. Complexes I?IV show various coordination motifs with different existing forms and coordination modes of the organic ligands. Furthermore, extend supramolecular networks are connected by secondary interactions such as hydrogen-bonding and aromatic stacking. The thermal stability and luminescent properties of the compounds were discussed in detail.  相似文献   

4.
1,4-Dichloro-3a,6a-diaza-1,4-diphosphapentalene (II) easily exchanges halogen with methyl iodide to form the corresponding 1,4-diiodo derivative (V) in a quantitative yield. The reaction of compound II with diiodine (1 equiv) affords compound III, the crystal structure of which contains 55% II and 45% V. Under the conditions of iodine excess (1 : 3), a ionic compound (IV) is formed, the crystal of which contains alternating layers consisting of planar networks [I2I3]? and heterocyclic cations [DDP–Cl]+. For the crystallographic information for compounds III–V, see CIF files CCDC no. 1560 410 (V), 1560 411 (III), and 1560 412 (IV).  相似文献   

5.
The copper(II) compounds [CuL](NO3)2 · H2O (I), [CuL](ClO4)2 · H2O (II), CuLCl2 · 3H2O (III), and CuLBr2 · 4H2O (IV), where L is a chiral dioxatetraazamacrocyclic ligand based on the natural monoterpene (+)-3-carene, have been synthesized. According to IR and EPR spectroscopy, L acts as a tetradentate chelating ligand coordinated through the N atoms of the NH and C=N groups. The NO 3 ? anions in I and the ClO 4 ? anions in II are outer-sphere. I and II have a planar coordination core CuN4, III has a CuN4ClO coordination core, and IV has a CuN4Br2 coordination core.  相似文献   

6.
Seven new cobalt(II) complexes based on the Schiff bases, 2,6-diacetylpyridine bis(isonicotinoylhydrazone) (H2L1) and 2,6-diacetylpyridine bis(nicotinoylhydrazone) (H2L2), are synthesized and studied by X-ray diffraction analysis: [Co(H2L1)(NCS)2] · 2.25H2O (I), [Co(H2L2)(NCS)2] · CH3OH (II), [Co(H2L2)(NCS)(H2O)]NCS (III), [Co(H4L1)(NCS)2](NO3)2 · 2H2O (IV), [Co(H4L1)(NCS)2][Co(NCS)4] · 0.75H2O (V), [Co(H4L2)(NCS)2][Co(NCS)4] · 1.75H2O (VI), and [Co(H2L2)(NCS)(CH3OH)]2[Co(NCS)4] · 2CH3OH (VII) (CIF files CCDC 941186 (I), 1457906 (Ia), 1457905 (II), 941187 (III), 1457907 (IV), 1457908 (V), 1457909 (VI), and 941188 (VII)). The organic ligands in the complexes act as pentadentate neutral H2L or doubly protonated (H4L)2+ coordinated through the same set of donor atoms N3O2. In all compounds IVII, the coordination polyhedron of the Co2+ ion in a complex with the Schiff bases has a shape of a pentagonal bipyramid. The hydrazones are arranged in the equatorial plane of the bipyramid. Its axial vertices are occupied by the nitrogen atoms of the NCS ̄ anions in compounds I, II, and IV–VI and by the nitrogen atoms of NCS ̄ and oxygen of the water molecule in compound III or methanol in compound VII. The NO 3 - anions or [Co(NCS)4]2 ̄ complex anions obtained by the reactions are involved along with the NCS ̄ anions in the formation of compounds IV–VII.  相似文献   

7.
Coordination compounds [CoLCl2] (I), [CuLCl(NO3)] (II), CuL(NO3)2 (III), and CuLCl2 (IV) (where L is a chiral pyrazolylquinoline—a derivative of terpenoid (+)-3-carene) were synthesized. X-ray diffraction data showed that crystal structures I and II are built of mononuclear acentric molecules. In the molecule of complex I, the Co2+ ion coordinates two N atoms of bidentate cycle-forming ligand L and two Cl atoms. The coordination polyhedron of Cl2N2 is a distorted tetrahedron. For complex I, μeff = 4.50 μB, which corresponds to a high-spin configuration d 7. In the molecules of II(1), II(2) (which are diastereoisomers of complex II), each Cu2+ ion coordinates two N atoms of bidentate cycle-forming ligand L, the Cl atom, and two O atoms of bidentate cyclic NO 3 ? ion. The ClN2O2 coordination polyhedra are tetragonal pyramids with different degrees of distortion. The structure of complex II consists of supramolecular clusters, i.e., isolated chains incorporating the molecules of II(1) and II(2). The values of μeff for II–IV correspond to the d 9 configuration. The results of EPR and IR study suggest that complex III contains the O4N2 polyhedron, whereas complex IV contains the Cl2N2 polyhedron. Complexes I and IV were found to show a high catalytic activity in ethylene polymerization reaction.  相似文献   

8.
Complexes ZnLCl2 (I) and [CdLCl2] n (IV), where L is chiral bis-pyridine containing fragments of natural monoterpenoide (–)-α-pinene are synthesized. Single crystals of [ZnLCl2]·CH2Cl2 (II), [ZnLCl2i-PrOH (III), and IV compounds are grown. The crystal structures of II and III are composed of mononuclear ZnLCl2 complex molecules and solvate CH2Cl2 and i-PrOH molecules; the coordination polyhedron of the zinc atom Cl2N2 is a distorted tetrahedron. According to the single crystal XRD data, complex IV is a 1D coordination polymer; the coordination core CdN2Cl4 is a distorted octahedron and Cl atoms are bridging ligands. In the structures of II, III, and IV the L molecule functions as a bidentate chelate ligand. In the solid phase, complexes I and IV exhibit photoluminescence in the visible range (λmax 505 nm and 460 nm respectively). The band intensity in the photoluminescence spectra of I and IV complexes considerably exceeds the band intensity in the spectrum of free L.  相似文献   

9.
Model reactions of the (≡Si-O-)3MIVH (1), (≡Si-O-)2MIVH2 (2), and (≡Si-O-)2MIIIH (3) hydrides, where M = Ti and Zr, immobilized on the surface of silica with methane and propane were studied by the density functional theory with the PBE functional. The reactions involved the breaking of C-H alkane bonds and the formation of the (≡Si-O-)3MR, (≡Si-O-)2M(H)R, and (≡Si-O-)2MR products (R = Me, n-Pr, and i-Pr), respectively. Reactions with the participation of 1 and 2 were found to occur as bimolecular processes without the formation of agostic-type prereaction complexes. With 3, the reaction was accompanied by the formation of stable prereaction and postreaction complexes. The conclusion was drawn that dihydrides 2 and trivalent metal hydrides 3 were much more reactive with respect to alkane C-H bonds than monohydrides 1. All the systems studied were characterized by low reaction regioselectivities.  相似文献   

10.
The cation-induced aggregation of sandwich crown-substituted complexes [Ln(R4Pc)2] (Ln = Lu (I) and Yb (II), R4Pc2? is the 4,5,4′,5′,4″,5″,4?,5?-tetrakis(1,4,7,10,13-pentaoxatridecamethylene)phthalocyaninate ion) and Ln2(R4Pc)3(Ln = Lu (III) and Yb (IV) in a CDCl3-DMSO-d 6 solution has been studied by 1H NMR. The data obtained are consistent with the conclusions concerning the composition of supramolecular aggregates drawn from spectrophotometric titration data. The molecules of double-decker complexes I and II form supramolecular oligomers, whereas triple-decker complexes III and IV form supramolecular dimers, which is presumably due to the stronger distortion of the planes of the outer decks of the triple-decker complexes as compared to their double-decker analogues.  相似文献   

11.
A series of compounds of the general formula Cu(HL)X2 · nH2O (compound I, X = ClO4, n = 3; compound II, X = NO3, n = 2; compound III, X = Cl, n = 0.5; compound IV, X = 1/2SO4, n = 0) is isolated by the reactions of the copper(II) salts with quinolinaldehyde semicarbazone (HL). Regardless of the reactant ratio, only the compounds with a metal to ligand mole ratio of 1: 1 are formed, where the organic reactant is coordinated in the molecular form. The X-ray diffraction analyses of the [Cu(HL)(NO3)(H2O)](NO3) · H2O (II) and [Cu(HL)Cl2] · 0.5H2O(III) compounds show their substantially different organizations of the molecular structures depending on the specifics of the acido ligand. An ionic structure with one NO 3 ? anion incorporated into the inner coordination sphere of the metal as a bidentate chelate ligand is observed in compound II. Molecular tetragonal pyramidal complexes associated into a dimer due to the bridging function of one coordinated Cl? anion are formed in structure III. The coordination polyhedron of the copper atom in structures II and III is an asymmetrically extended tetragonal bipyramid. The CuClCu angle equal to 90° and the distance between two planes in compound III equal to 2.978 Å determine the insignificant antiferromagnetic interaction in this compound (g = 2.1, J = ?2.5 cm?1).  相似文献   

12.
A new open-cubane MnIII, [{(H2O)MnIIIL}{MnIIIL}]2·2(CH3OH).2(CH3CH2OH)·2Cl, 1 where H 2 L=[N-(2-hydroxyethyl)-3-methoxysalicylaldimine] has been synthesized and characterized by element analysis, FT-IR, solid UV–Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows an open-cubane tetranuclear complex. The Mn1 (Mn1i) ions is hexacoordinate by NO5 donor sets while the Mn2 (Mn2i) is pentacoordinate by NO4 donor sets. The solid state photoluminescence properties of complex 1 and its ligand H 2 L have been investigated under UV light at 349 nm in the visible region. H 2 L exhibits blue emission while complex 1 shows orange-red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex 1 in the range 2–300 K indicate an antiferromagnetic interaction.  相似文献   

13.
The reaction of [Co(Etm)3] · 3H2O (I) with sulfuric acid affords [Co(HEtm)3]2(SO4)3 · 4H2O (II). The change in the synthesis procedure (the direction interaction of cobalt(II) sulfate with β-aminoethanol (HEtm)) makes it possible to isolate [Co(HEtm)3](SO4)(HSO4) · H2O (III) and {[Co(HEtm)3][Co(Etm)3]}2(SO4)3 · 7.75H2O (IV). The X-ray diffraction analyses of compounds IIIV show that all of them are of the ionic type. In compounds II and III, the ionic structure consists of the [Co(HEtm)3]3+ cations and sulfate anions in a ratio of 2: 3 and 1: 2, respectively. The basic difference in compounds II and III is the different degrees of deprotonation of the acid residues. In complex II, two anions SO 4 2? are doubly deprotonated. In complex III, of the four anions found in the independent part of the unit cell of the sulfate anion two anions are monodeprotonated. In structure IV, two crystallographically independent complexes [Co(HEtm)3]3+ and [Co(Etm)3] are joined into a dimer through the O-H?O hydrogen bonding.  相似文献   

14.
Using cationic and anionic polymerization of 1,1,3,3-tetramethyl-2-oxa-1,3-disilacyclopentane (I) and 1,1,3,3-tetramethyl-2-oxa-1,3-disilacyclohexane (II), α,ω-dihydroxypolydimethylsildimethyleneand α,ω-dihydroxypolydimethylsiltrimethylenedimethylsiloxanes (III and IV, respectively) were synthesized. The polymer materials for the flat membranes MI and MII with stable mechanical properties were produced via crosslinking condensation of tetraethoxysilane and the terminal hydroxyl groups of III and IV. Methane and butane were applied to demonstrate the gas transport properties of these membranes. It was shown that compared to PDMS, the synthesized MI and MII have a higher butane/methane ideal selectivity at high permeability coefficients (7800 and 6600 Barrer, respectively). An increase in butane/methane selectivity is achieved due to the high coefficients of butane solubility in the membrane materials.  相似文献   

15.
The NiCl2 and CoCl2 complexes with 4,5-(2-pyridylethylene)-dithio-1,3-dithiol-2-thione (L1) and 4,5-(4-pyridylethylene)-dithio-1,3-dithiol-2-thione (L2) were described. The L1 ligand shows bidentate coordination through the pyridyl N atoms and the thiol S atoms in a tetrahedral [CoCl2(L1)] complex (I) and in an octahedral [NiCl2(L1)2](MeCN)2 complex (II). The L2 ligand exhibits monodentate coordination through the pyridyl N atom in tetrahedral complexes [CoCl2(L2)2 (III) and [NiCl2(L2)2] (IV). Complexes I, III, IV in crystal state are octahedral due to extra coordination of the thione S atoms or the chloride bridges responsible for the polymeric structure. The structure of the complex II · CH2Cl2 was determined by X-ray diffraction analysis. The crystals are monoclinic, space group P21/c, a = 11.895(2) Å, b = 13.374(3) Å, c = 21.873(4) Å, β = 95.30(3)°, Z = 2. The Ni atom has quasi-tetrahedral surrounding due to two chloride ions and two L1 ligands coordinated through the pyridyl N atoms and the thiol S atoms.  相似文献   

16.
The reactions of [(LiPrNi)2(μ-η22-S4)] (I) and [(LiPrNi)2(μ-η22-Se2)] (II) (LiPr = CH[C(Me)N(2,6- i Pr2C6H3)]2) with decamethylsamarocene [Sm(Cp*)2(Тhf)2] (Cp* = η5-C5Me5) are studied. It is assumed that the reactions afford hetero-d/f-metal complexes. However, these complexes are not observed but the transfer of chalcogens from Ni to Sm and the formation of [(Sm(Cp*)2(Тhf))2(μ-S)] (III) and [(Sm(Cp*)2(Тhf))2(μ-Se)] (IV) occur. The second reaction products are [(LiPrNi)2(μ-η22-S2)] (V) in the case of sulfur and [(LiPrNiI)2(μ-η66-C7H8)2] (VI) in the case of selenium. All reaction products have been described previously, but compounds III and V are isolated as new crystalline phase, the structures of which are determined by X-ray diffraction analysis (CIF files CCDC nos. 1559045 (V) and 1559046 (III)).  相似文献   

17.
Effects of environment conditions (humidity and temperature) on the proton conductivity of aminobenzenesulfonic acids: 2-amino-(orthanilic) acid (I), 3-amino-(metanilic) acid (II), 4-amino-(sulfanilic) acid (III), their general formula NH2C6H4SO3H, and 3-amino-4-hydroxobenzenesulfonic acid (IV) [NH2(OH)C6H3SO3H), as well as (for sake of comparison) inorganic aminosulfonic acid [sulphamic acid (NH2SO3H)] (V) are studied. All above-listed compounds are zwitter-ions: they contain a fragment NH 3 + SO 3 ? . The presence of this structural fragment affects the thermal stability of the compounds; according to the mass-spectrometry analysis data, the decomposition of the SO3-fragment begins at the following temperatures: (I) ?339, (II) ?370, (III) ?320, (IV) ?278, and (V) ?220°C. It is shown that the increase of the environment relative humidity up to 95% results in the increase of the aminobenzenesulfonic acids proton conductivity from 10?9–10?8 to 10?5 S cm?1; sulphamic acid, to 10?4 S cm?1. At that, the amount of adsorbed water does not exceed 0.2 moles per 1 sulfo group in all cases. The conductance activation energy equals 0.2 eV at a relative humidity of 95%.  相似文献   

18.
Complexes [CuL1Cl2] (I), [CuL2Cl2] · EtOH (II), and Cu2L3Cl4 (III) containing esters of the N-derivatives of optically active amino acids based on (+)-3-carene (L1, L2) and (?)-α-pinene (L3) are synthesized. The crystal and molecular structures of compounds I and II are determined by X-ray diffraction analyses (CIF files CCDC nos. 1560071 (I), 1560072 (II)). The crystal structure of compound I consists of mononuclear complex molecules. In the structure of compound II, the unit cell contains two crystallographically independent molecules of mononuclear complex [CuL2Cl2] and two EtOH molecules. Ligands L1 and L2 perform the tridentate-chelating function by the N atoms of the NH and NOH groups and by the O atom of the C=O group. In compounds I and II, the coordination polyhedra Cl2N2O of the Cu atoms are trigonal bipyramid. According to the data of IR and electronic spectroscopy, binuclear complex III has similar coordination polyhedra. The experimental values of μeff for compounds I, II, and III at 300 K are 1.93, 1.88, and 2.71 μB. For complex III, the μeff(T) dependence in a range of 2–300 K indicates a weak ferromagnetic exchange interaction.  相似文献   

19.
For N-(thio)phosphorylthioureas of the common formula RC(S)NHP(X)(OiPr)2HLI (R = N-(4′-aminobenzo-15-crown-5), X = S), HLII (R = N-(4′-aminobenzo-15-crown-5), X = O), HLIII (R = PhNH, X = S), HLIV (R = PhNH, X = O), and (N,N′-bis-[C(S)NHP(S)(OiPr)2]2-1,10-diaza-18-crown-6) H2LV, salts LiLI,III,IV, NaLIIV, KLIIVM2LV (M = Li+, Na+, K+), Ba(LI,III,IV)2, and BaLV have been synthesized and investigated. Compounds NaLI,II quantitatively drop out as a deposit in ethanol medium, allowing the separation of Na+ and K+ cations. This effect is not displayed for the other compounds. The crystal structures of HLIII and the solvate of the composition [K(Me2CO)LIII] have been investigated by X-ray crystallography.  相似文献   

20.
Four homoleptic copper(II) complexes, [Cu(Meophtpy)2](ClO4)2 (Meophtpy = 4′-(4-methoxylphenyl)- 2,2′:6′,2″-terpyridine) (I), [Cu(Meophtpy)2](ClO4)2 · 2H2O (II), [Cu2(m-Clphtpy)4](ClO4)4 (m-ClPhtpy = 4′-(3-chlorophenyl)-2,2′:6′,2″-terpyridine) (III), and [Cu2(m-ClPhtpy)4](ClO4)4 (IV) have been synthesized by hydrothermal methods and characterized by IR, elemental analysis and single crystal X-ray diffraction (CIF files CCDC nos. 963375 (I), 885457 (II), 963377 (III), and 963376 (IV)). Complex II is a polymorph of I and complex IV is a polymorph of III. All these complexes are obtained with 95% ethanol solution or 50% ethanol solution and the solvent control on the crystallization are obviously found. In all complexes, the face-to-face interactions between pyridyl rings or phenyl rings facilitate the construction of 3D network in the crystal in addition to hydrogen bonds. The fluorescence properties of these complexes have been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号