首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme catechol O-methyltransferase (COMT) catalyzes the Me group transfer from the cofactor S-adenosylmethionine (SAM) to the hydroxy group of catechol substrates. Potential bisubstrate inhibitors of COMT were developed by structure-based design and synthesized. The compounds were tested for in vitro inhibitory activity against COMT obtained from rat liver, and the inhibition kinetics were examined with regard to the binding sites of cofactor and substrate. One of the designed molecules was found to be a bisubstrate inhibitor of COMT with an IC50 = 2 microM. It exhibits competitive kinetics for the SAM and noncompetitive kinetics for the catechol binding site. Useful structure-activity relationships were established which provide important guidelines for the design of future generations of bisubstrate inhibitors of COMT.  相似文献   

2.
《Analytical letters》2012,45(13):2677-2688
ABSTRACT

A chemiluminescence(CL) flow system is described for the determination of menadione sodium bisulfite based on its repression on the chemiluminescence(CL) emission produced upon mixing a hexacyanoferrate(III) solution with an alkaline luminol solution in the absence of co-oxidizer. The system responds linearly to menadione sodium bisulfite concentration in the range 0-1 μg/mL with a detection limit (3σ) of 0.01 μg/mL. Relative standard deviation (RSD) of 0.16% for 0.4 μg/mL menadione sodium bisulfite (n=11). The system has been successfully applied to the determination of menadione sodium bisulfite in tablets and injections.  相似文献   

3.
Properties and efficacies of novel aldose reductase (AR) inhibitors, M16209 (1-(3-bromobenzo[b]furan-2-ylsulfonyl)hydantoin) and M16287 (1-(3-chlorobenzo[b]furan-2-ylsulfonyl)hydantoin), were examined in vitro and in vivo, compared with known AR inhibitors, ONO-2235 and sorbinil. These four compounds inhibited partially purified aldose reductases from various origins, and the potencies of M16209 and M16287 were on the whole similar to ONO-2235, and were greater than that of sorbinil. The IC50 values of the four AR inhibitors did not substantially depend on the substrate used. Kinetic studies of inhibition of partially purified bovine lens (BLAR) revealed that M16209, M16287 and sorbinil were uncompetitive with glyceraldehyde and noncompetitive with nicotineamide adenine dinucleotide phosphate (NADPH), whereas ONO-2235 was noncompetitive with both glyceraldehyde and NADPH. Aldose reductase became less sensitive to the four inhibitors as enzyme purification progressed, although the susceptibility to inhibition was partially reversed by incubation with dithiothreitol. In addition, the four compounds slightly affected those enzymes of carbohydrate and glutathione metabolism which were tested. M16209 and M16287 prevented sorbitol accumulation in isolated rat tissues as potently as ONO-2235 and sorbinil. M16209 and M16287 were effective in the prevention of galactosemic cataracts and amelioration of diabetic neuropathy with almost the same potency, while ONO-2235 was effective only in neuropathy, and sorbinil was effective in galactosemic cataracts and diabetic neuropathy with a different potency. These results indicate that M16209 and M16287 are potent aldose reductase inhibitors, which could be applicable to treatment for diabetic complications.  相似文献   

4.
Glutathione reductase is an important housekeeping enzyme for redox homeostasis both in human cells and in the causative agent of tropical malaria, Plasmodium falciparum. Glutathione reductase inhibitors were shown to have anticancer and antimalarial activity per se and to contribute to the reversal of drug resistance. The development of menadione chemistry has led to the selection of 6-[2'-(3'-methyl)-1',4'-naphthoquinolyl]hexanoic acid, called M(5), as a potent reversible and uncompetitive inhibitor of both human and P. falciparum glutathione reductases. Here we describe the synthesis and kinetic characterization of a fluoromethyl-M(5) analogue that acts as a mechanism-based inhibitor of both enzymes. In the course of enzymatic catalysis, the suicide substrate is activated by one- or two-electron reduction, and then a highly reactive quinone methide is generated upon elimination of the fluorine. Accordingly the human enzyme was found to be irreversibly inactivated with a k(inact) value of 0.4 +/- 0.2 min(-1). The crystal structure of the alkylated enzyme was solved at 1.7 A resolution. It showed the inhibitor to bind covalently to the active site Cys58 and to interact noncovalently with His467', Arg347, Arg37, and Tyr114. On the basis of the crystal structure of the inactivated human enzyme and stopped-flow kinetic studies with two- and four-electron-reduced forms of the unreacted P. falciparum enzyme, a mechanism is proposed which explains naphthoquinone reduction at the flavin of glutathione reductase.  相似文献   

5.
In this paper, a new chemiluminescence phenomenon described as the second chemiluminescence emission was observed when menadione sodium bisulfite was injected into a reaction mixture of luminol and potassium periodate, in which luminol was oxidized by excess amount of potassium periodate for about 24 h. The mechanism of the second chemiluminescence emission was proposed based a series of experiments. Moreover, our experiment discovered that the second chemiluminescence intensity was a linear function of the concentration of menadione sodium bisulfite in the range of 2 × 10−9 to 4 × 10−5 g L−1. Based on this phenomenon, a new flow-injection method for the determination of menadione sodium bisulfite has been established.  相似文献   

6.
An enzyme (befunolol reductase) which catalyzes the reduction of befunolol to dihydrobefunolol was purified from the cytosolic fraction of rabbit liver to homogeneity by various chromatographic techniques. Befunolol reductase had molecular weights of 29000 on sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and 34000 on gel filtration. The enzyme required reduced nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor and showed an optimal pH of 6.5. The apparent Km and Vmax values of the enzyme for the reduction of befunolol were 1.7 mM and 4.4 units/mg, respectively. Flavonoids, sulfhydryl reagents, heavy metals and coumarins strongly inhibited the enzyme. The enzyme catalyzed the reduction of a variety of aromatic ketones. In addition to befunolol, some ketone-containing drugs such as daunorubicin and levobunolol were efficiently reduced by the enzyme. On the basis of substrate specificities for steroids, befunolol reductase purified from the cytosolic fraction of rabbit liver appeared to be a 3 alpha-hydroxysteroid dehydrogenase.  相似文献   

7.
Xanthine oxidase (XOD) is a key enzyme in the human body to produce uric acid, and its inhibitor can be used for the treatment of hyperuricemia and gout. In this study, an online CE-based XOD immobilized enzyme microreactor (IMER) was developed for the enzyme kinetics assays and inhibitor screening. After 30 consecutive runs, the XOD activity remained about 95.6% of the initial immobilized activity. The Michaelis–Menten constant (Km) of the immobilized XOD was determined as 0.39 mM using xanthine as substrate. The half-maximal inhibitory concentration and inhibition constant of the known inhibitor 4-aminopyrazolo[3,4-d]pyrimidine on XOD were determined as 11.9 and 5.2 μM, respectively. Then, the developed method was applied to evaluate the XOD inhibitory activity of 10 flavonoids, which indicated that dihydroquercetin, quercetin, biochanin A, and epicatechin had significant inhibitory effect on XOD. In addition, molecular docking results verified that the binding energy of the flavonoids with enzyme were in line with their inhibitory activity determined by XOD–IMER. Therefore, the developed XOD–IMER is a potential tool for the primary screening of XOD inhibitors from natural products.  相似文献   

8.
The analytical method of determining enzyme activity by liquid chromatography-mass spectrometry (LC/MS) was developed and applied for investigation of the effect of polycyclic aromatic hydrocarbons (PAHs) on the enzyme activity of chitinase. The measurement of chitinase activity by LC/MS is useful in order to use the nonderivatized substrate, which can show in vivo chitinase activity. Substrate consumption and product formation were monitored in order to determine chitinase activity. It was shown that, for the first time, in vitro addition of PAHs inhibited the activity of chitinase in a noncompetitive manner. The IC50 value of benzo[a]pyrene was 1.4 μM, and PAHs containing four or more aromatic rings showed the same or higher inhibitory effect, whereas PAHs with a lower number of aromatic rings showed lower inhibition of the chitinase activity than benzo[a]pyrene.  相似文献   

9.
Bérubé M  Poirier D 《Organic letters》2004,6(18):3127-3130
[structure: see text] The inhibitor of type 1 17beta-hydroxysteroid dehydrogenase EM-1745 (1) exhibits affinity for both the substrate (estrone or estradiol) and the cofactor (NAD(P)H) binding domains. However, to increase its bioavailability, this compound needs to be simplified. The efficient and convergent synthesis of simplified substrate/cofactor hybrid inhibitors (compounds 2) involving a cross-metathesis and a Sonogashira coupling reaction as key steps is described. Compounds 2a-c were also tested as enzyme inhibitors and compared to EM-1745.  相似文献   

10.
A series of N-linked tetrakis(tetrapeptido)calix[4]arene diversomers, 3A-P, has been synthesized by coupling of a cone calix[4]arene tetracarboxylic acid chloride with tetrapeptides 1A-P obtained in a parallel fashion. The inhibition activity of 3A-P towards tissue and microbial transglutaminase was evaluated by in vitro assays with a labeled substrate. Kinetic analysis using one of the most active derivatives (3A) showed a noncompetitive inhibition with respect to the amino acceptor substrate and an uncompetitive inhibition with respect to amino donor substrate. Experimental results are in accordance with an inhibition due to a protein specific surface recognition on a region noncomprising the enzyme active site.  相似文献   

11.
Dilute-acid pretreatment liquor (PL) produced at NREL through a continuous screw-driven reactor was analyzed for sugars and other potential inhibitory components. Their inhibitory effects on enzymatic hydrolysis of Solka Floc were investigated. When the PL was mixed into the enzymatic hydrolysis reactor at 1:1 volume ratio, the glucan and xylan digestibility decreased by 63% and 90%, respectively. The tolerance level of the enzyme for each inhibitor was determined. Of the identified degradation components, acetic acid was found to be the strongest inhibitor for cellulase activity, as it decreased the glucan yield by 10% at 1 g/L. Among the sugars, cellobiose and glucose were found to be strong inhibitors to glucan hydrolysis, whereas xylose is a strong inhibitor to xylan hydrolysis. Xylo-oligomers inhibit xylan digestibility more strongly than the glucan digestibility. Inhibition by the PL was higher than that of the simulated mixture of the identifiable components. This indicates that some of the unidentified degradation components, originated mostly from lignin, are potent inhibitors to the cellulase enzyme. When the PL was added to a simultaneous saccharification and co-fermentation using Escherichia coli KO11, the bioprocess was severely inhibited showing no ethanol formation or cell growth.  相似文献   

12.
We have recently developed a versatile technique, complementary polymer pair system (CPPS), which enables switching the activity of diverse enzymes using anionic poly (acrylic acid) (PAAc) and cationic poly(allylamine) (PAA). To obtain a deeper understanding of CPPS, we investigated the manner by which PAAc inhibits cationic ribonuclease A, lysozyme, and trypsin. Studies of the enzyme kinetics showed that PAAc acts as a noncompetitive inhibitor for all these enzymes, and carries several potent enzyme binding sites (Ki ≈ 10?8 M). In addition, the inhibited enzymes were recovered by oppositely charged PAA. These data indicate the generality of CPPS, as only the surface charge and not the substrate binding site of the enzymes should be considered when determining a charged polymer as an inhibitor. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Based on the substrate specificity for 5-lipoxygenase and the known stereochemical course of the reaction, a hypothetical model of the enzyme active site was developed and used to design 2 types of selective inhibitors of 5-lipoxygenase. Both inhibitor types used aromatic rings in place of ( Z )-olefins of the substrate and were designed to mimic the nonpolar end of arachidonic acid. One inhibitor type used a carboxylic-acid interaction with the O-binding centre of the enzyme in analogy with known cyclooxygenase inhibitors, whereas a second type employed a hydroxylamine function to interact with a presumed tyrosine or cysteinyl radical predicted to be in the enzyme active site. Selective 5-lipoxygenase inhibitors were 7-(hexyloxy) naphthalene-2-acetic acid ( 1 ) and N -methyl;- N (7-propoxynaphthalene-2-ethyl)hydroxylamine ( 2 ). Structure-activity relationships for both types of inhibitors are discussed.  相似文献   

14.
The use of DSC to evaluate the quality of drugs is demonstrated via some typical problems: purity determination of nicotinamide, granulation of calcium D-(+)-pantothenate, drying of menadione sodium bisulfite, stability ofα-hydroxyvitamin D on storage, and purification of calcium homo-pantothenate, pyridoxal-5′-phosphate and pyridoxal-hydrochloride.  相似文献   

15.
Neurospora crassa XI was found to ferment xylose and glucose simultaneously. Xylose was the appropriate inducer for the production of xylose reductase that had two isoenzymes designated as EI and EII. Both EI and EII, which were purified by affinity chromatography, had NADPH-dependent xylose reductase activities. EII also had NADH-dependent activity, and EI is the only xylose reductase found so far without any NADH-dependent activity. EI and EII had MWs of 30 kDa and 27 kDa, and pIs of 5.6 and 5.2, respectively. The specifities of EI and EII against triose, pentoses, and hexoses were studied. The Kms against xylose for EI and EII were 2.3 mM and 1.1 mM respectively, which were much lower than those of the xylose reductase from yeast.  相似文献   

16.
Aldose reductase and aldehyde reductase from the medulla of the rat kidney have been purified to homogeneity by using affinity chromatography, gel filtration and chromatofocusing. The molecular weights of aldose reductase and aldehyde reductase by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis were found to be 37000 and 39000, respectively. The isoelectric points of aldose reductase and aldehyde reductase were found to be 5.4 and 6.2 by chromatofocusing, respectively. The major differences of amino acid compositions between both enzymes were found in serine, alanine and aspartic acid. Substrate specificity studies showed that aldose reductase utilized aldo-sugars such as D-glucose and D-galactose, but aldehyde reductase did not use them. The Km values of aldose reductase for various substrates were lower than those of aldehyde reductase. Aldose reductase utilized both reduced nicotinamide adenine dinucleotide phosphate (NADPH) and reduced nicotinamide adenine dinucleotide (NADH) as coenzymes, whereas aldehyde reductase utilized only NADPH. The presence of the sulfate ion resulted in a dramatic activation of aldose reductase whereas it did not affect aldehyde reductase activity. These enzymes were strongly inhibited by the known aldose reductase inhibitors. However, aldose reductase was more susceptible than aldehyde reductase to inhibition by the aldose reductase inhibitors.  相似文献   

17.
Artificial molecular clips and tweezers, designed for cofactor and amino acid recognition, are able to inhibit the enzymatic activity of alcohol dehydrogenase (ADH). IC50 values and kinetic investigations point to two different new mechanisms of interference with the NAD(+)-dependent oxidoreductase: While the clip seems to pull the cofactor out of its cleft, the tweezer docks onto lysine residues around the active site. Both modes of action can be reverted to some extent, by appropriate additives. However, while cofactor depletion by clip 1 was in part restored by subsequent NAD(+) addition, the tweezer (2) inhibition requires the competitive action of lysine derivatives. Lineweaver-Burk plots indicate a competitive mechanism for the clip, with respect to both substrate and cofactor, while the tweezer clearly follows a noncompetitive mechanism. Conformational analysis by CD spectroscopy demonstrates significant ADH denaturation in both cases. However, only the latter case (tweezer-lysine) is reversible, in full agreement with the above-detailed enzyme switch experiments. The complexes of ADH with clips or tweezer can be visualized in a nondenaturing gel electrophoresis, where the complexes migrate toward the anode, in contrast to the pure enzyme which approaches the cathode. Supramolecular chemistry has thus been employed as a means to control protein function with the specificity of artificial hosts opening new avenues for this endeavor.  相似文献   

18.
Abstract— Superoxide dismutase (SOD) activity was induced by ca 2-fold (to5–6 U) when Trichoplusia ni midfifth-instar larvae were exposed to two toxic oxygen species generating plant pro-oxidants, quercetin (a flavonoid) and xanthotoxin (8-methoxypsoralen; a photoactive furanocoumarin). Very high catalase (CAT) activity ( ca 300 U) of this insect was not affected by 8-methoxypsoralen, but was slightly decreased by quercetin. No Se-dependent glutathione peroxidase (GPOX) activity was observed, but high glutathione transferase (GST) peroxidase activity (over 50 U) in this insect was slightly induced by 8-methoxypsoralen (8-MOP), and was partially inhibited by quercetin, 8-Methoxypsoralen induced the activity of glutathione reductase (GR), but quercetin partially inhibited the activity of this enzyme. An increase in SOD activity appears to be the main response of this insect to dietary exposure to pro-oxidant compounds. High CAT activity guarantees the destruction of large cellular increases in H2O2, a product of rapid dismutation of superoxide from induced activity of SOD. Moreover, GST with its peroxidase activity apparently substitutes for GPOX, forming a GST/GR enzyme pair as a primary line of defense against deleterious organic hydroperoxides. These studies clearly point out the key role for an insect's antioxidant enzymatic countermeasures against defensive pro-oxidant compounds produced by plants.  相似文献   

19.
A large number of inhibitors of aldose reductase enzyme were submitted to the CASE (computer automated structure evaluation) program in order to ascertain the topological features relevant to activity. On the basis of the twenty-six biophores (activating fragments) and one biophobe (inactivating fragment), a new proposed interaction model was suggested for an aldose reductase enzyme with the chemical inhibitors. The critical relationship between enzyme inhibition and the structure of inhibitors is believed to depend on the relative positions of subordinate regions within the inhibitor structure.  相似文献   

20.
熊玥  汪澄  刘建晖  石慧慧  汪云花  孙瑶  于洁 《色谱》2021,39(6):633-641
应用非靶向分析技术,筛查、分析和确证恩诺沙星粉(水产用)中的非法添加物.分别制备甲酸酸化、碳酸钠碱化的恩诺沙星粉供试品溶液,经超高效液相色谱-二极管阵列检测器(UPLC-PDA)检测初筛,获取未知物色谱图.应用超高效液相色谱-飞行时间高分辨质谱(UPLC-TOF-HRMS),在正、负离子模式下对酸化、碱化样液进一步检测...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号