首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triacylglycerol lipase (EC 3.1.1.3) from rape (Brassica napus L. cv Ceres) is quite easily prepared from the 100,000 x g supernatant of cotyledon homogenates. The lipase is present in a high-molecular-mass fraction ( > 1.5 x 106 dalton by gel filtration), but it can be rapidly extracted from the 100,000 xg supernatant by precipitation with polyethyleneglycol 8000 (4%, w/v) and MgCl2 (40 mM) giving about a 10-fold purification. After delipidation, the lipase has an Mr of about 300,000. It hydrolyzes triacylglycerols to fatty acids and glycerol, although the fatty acids from the sn-1 or -3 positions are hydrolyzed first to yield 1,2(2,3)-diaclyglycerols. Lipase immobilized onto Celite by precipitation with acetone at-20°C catalyzes the esterification of oleic acid with butanol dissolved in hexane.  相似文献   

2.
Liu F  Zhang F  Jin Z  He Y  Fang H  Ye Q  Zhou W 《Analytica chimica acta》2008,629(1-2):56-65
A new acetolactate synthase (ALS)-inhibiting herbicide, propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273), was applied to oilseed rape (Brassica napus L.) leaves in different leaf positions. Visible/near-infrared (Vis/NIR) spectroscopy was investigated for fast and non-destructive determination of ALS activity and protein content in rapeseed leaves. Partial least squares (PLS) analysis was the calibration method with comparison of different spectral preprocessing by Savitzky-Golay (SG) smoothing, standard normal variate (SNV), first and second derivative. The best PLS models were obtained by first-derivative spectra for ALS, whereas original spectra for soluble, non-soluble and total protein contents. Simultaneously, certain latent variables (LVs) were used as the inputs of back-propagation neural network (BPNN) and least squares-support vector machine (LS-SVM) models. All LS-SVM models outperformed PLS models and BPNN models. The correlation coefficient (r), root mean square error of prediction (RMSEP) and bias in validation set by LS-SVM were 0.998, 0.715 and 0.079 for ALS, 0.999, 33.084 and 1.178 for soluble protein, 0.997, 42.773 and 6.244 for non-soluble protein, 0.999, 59.562 and 7.437 for total protein, respectively. The results indicated that Vis/NIR spectroscopy combined with LS-SVM could be successfully applied for the determination of ALS activity and protein content of rapeseed leaves. The results would be helpful for further on field analysis of using Vis/NIR spectroscopy to monitor the growing status and physiological properties of oilseed rape.  相似文献   

3.
4.
A peptide fraction having an average size of 5.6 amino acids has been purified from a rapeseed hydrolyzate, acylated using C(10)-C(14) acyl chlorides, and the surface tension values at the air-water interface and emulsifying properties studied. As compared with standard surface-active proteins, such as bovine serum albumin (BSA), and with detergents such as sodium dodecyl sulfate (SDS), acylated peptides exhibited particular surface characteristics. The surface tension at air-water interface of acylated peptides ranged from 29.1 to 37.8 mN/m at equilibrium; these values were considerably lower than those for BSA and closer those for SDS, suggesting that acylated peptides pack at the air-water interface more like detergents than like proteins. The adsorption of acylated peptides to the oil-water interface was slower than for SDS or BSA, as deduced from the rather large size of oil droplets in emulsions (31-17 microm). Consequently, these emulsions creamed extensively during aging. Nevertheless, emulsions generated from acylated peptides were in general more stable to phase separation than those prepared from SDS. The C(14) acylated peptides were more effective for generating emulsions than the C(10) and C(12) derivatives, especially concerning the stability of emulsions against coalescence and phase separation, which was better than SDS and close to BSA.  相似文献   

5.
The last step of the production of four phthalimide-derived acids, designed to act as antiasthma drugs, was performed by enzymatic hydrolysis of the respective methyl or ethyl esters. The esters 4-ethyl-[2-(1,3-dioxo-1,3-dihydro-2-isoindoylyl)]-phenoxyacetic methyl ester (PHT-MET), 4-ethyl-[2-(1,3-dioxo-1,3-dihydro-2-isoindoylyl)]-phenoxyacetic ethyl ester, 4-(1,3-dioxo-1,3-dihydro-2-isoindoylyl)-phenoxyacetic ethyl ester, and 2-(1,3-dioxo-1, 3-dihydro-2-isoindoylyl)-phenoxyacetic ethyl ester were hydrolyzed by immobilized lipase. The enzymatic reaction could be used only to produce the desired 4-substituted compounds. The best result that was found to hydrolysis of PHT-MET, and, therefore, that ester was selected for optimization experiments in a three-phase system. Reactions were performed with solid biocatalyst (Lipozyme® RM IM), organic solvent phase (ethyl acetate), and aqueous phase (saturated Na2CO3 solution). To optimize the reaction conditions, an experimental design optimization procedure was used. The variables studied were the amount of enzyme, the temperature, and the volume of the aqueous solution. Time course experiments were then performed for different initial enzyme concentrations (0.5, 0.9, and 1.4 UH/mL of solvent). The optimized reaction conditions found were 20 mg of Lipozyme (0.9 UH/mLsolvent) and 5.0 mL of Na2CO3(sat) at 40°C for 6 h.  相似文献   

6.
A recent advance in the study of plant lipases involving immunological techniques is presented. In an attempt to characterize lipases of cotyledons from germinating rapeseed seedlings and to investigate an eventual cross-reactivity with animal lipases, we have prepared anti-porcine pancreatic lipase antibodies raised in rabbit. It is shown by enzyme-linked immunosorbent assay and dot-blotting that these antibodies react with lipases in the rapeseed crude extract and in the different cellular fractions obtained by differential centrifugation. Preincubation of the antiserum with the rapeseed crude extract affects the amount of antibodies binding to the porcine pancreatic lipase. We demonstrate immunochemical cross-reactivity between rapeseed and porcine pancreatic lipase. Using the immunoblotting procedure, it is found that antibodies bind specifically to a single polypeptide with a molecular mass of about 55 kDa. Rapeseed lipase activity decreased after immunoprecipitation suggesting that antibodies were bound to some catalytic site residues. We conclude from the data obtained in this study that the two different lipase species present close similarities in amino acid sequence and antigen characteristics.  相似文献   

7.
Reactions catalyzed by supported enzymes present important advantages when compared with those in aqueous media or organic solvents: separation of enzymes from substrate is easily accomplished, enzyme stability may be improved, and control of the reaction products is more accurate. We present the experimental results of the kinetic study of ethyl acetate hydrolysis in gaseous phase catalyzed by a commercial immobilized lipase (Lipozyme IM; Novo Nordisk). The hydrolysis reaction was studied as a function of ethyl ester and water partial pressure at a constant temperature of 318 K. The amount of biocatalyst used was varied between 100 and 300 mg, and the reaction was studied in a flow-through glass microreactor. Under the conditions used, water was an important parameter in the gas-phase reaction. Activation energy was 24.8 kJ/mol and the overall order of reaction was one. Finally a Bi-Bi reaction mechanism is proposed.  相似文献   

8.
有机相中固定化脂肪酶催化合成植物甾醇酯   总被引:3,自引:0,他引:3  
蒋振华  于敏  任立伟  周华  韦萍 《催化学报》2013,34(12):2255-2262
酶法合成植物甾醇酯具有反应条件温和、产物纯度和产量高等优点,但非水相酶催化的活性和稳定性普遍较低.本文以大孔树脂固定化脂肪酶为催化剂,并在催化过程中添加乳糖的类似物,构建了有机相高效合成植物甾醇酯的工艺过程.以酯化率为考察指标,对脂肪酶和反应溶剂进行筛选,对酯化条件进行优化,同时考察了糖的种类及添加量对酶催化性能的影响.结果表明,大孔树脂NKA吸附固定化的褶皱假丝酵母(Candida rugosa)脂肪酶(NKA-CRL)为最适宜的催化剂,以正己烷为反应介质,在酸醇摩尔比为2和添加酶蛋白质量7.5%的海藻糖的条件下,40°C反应10 h,酯化率达到96.6%.连续6次催化后,植物甾醇的酯化率仍维持在85.0%以上.  相似文献   

9.
Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.  相似文献   

10.
Rapeseed (Brassica napus L.) is a herbaceous annual plant of the Cruciferous family, the Cabbage genus. This oilseed crop is widely used in many areas of industry and agriculture. High-quality oil obtained from rapeseed can be found in many industrial food products. To date, extracts with a high content of biologically active substances are obtained from rapeseed using modern extraction methods. Brassica napus L. seeds contain polyunsaturated and monounsaturated fatty acids, carotenoids, phytosterols, flavonoids, vitamins, glucosinolates and microelements. The data in this review show that rapeseed biocompounds have therapeutic effects in the treatment of various types of diseases. Some studies indicate that rapeseed can be used as an anti-inflammatory, antioxidant, antiviral, hypoglycemic and anticancer agent. In the pharmaceutical industry, using rapeseed as an active ingredient may help to develop new forms drugs with wide range of therapeutic effects. This review focuses on aspects of the extraction of biocompounds from rapeseed and the study of its pharmacological properties.  相似文献   

11.
12.
In the work, mucor miehei lipase (MML) was covalently immobilized on the 2,4,6-trichloro-1,3,5-triazine (TCT)-modified magnetite nanoparticles. Then, the immobilized MML was utilized in the synthesis of functionalized 4H-Chromenes via a multicomponent reaction firstly. Under the optimized reaction conditions, immobilized MML displayed high catalytic performance (Yield: 81–96%) and excellent reusability, indicating a high potential for practical operation.  相似文献   

13.
Mucor miehei lipase was immobilized on magnetic polysiloxane-polyvinyl alcohol particles by covalent binding with high activity recovered. The performance of the resulting immobilized biocatalyst was evaluated in the synthesis of flavor esters using heptane as solvent. The impact on reaction rate was determined for enzyme concentration, molar ratio of the reactants, carbon chain length of the reactants, and alcohol structure. Ester synthesis was maximized for substrates containing excess acyl donor and lipase loading of 25 mg/mL. The biocatalyst selectivity for the carbon chain length was found to be different concerning the organic acids and alcohols. High reaction rates were achieved for organic acids with 8 or 10 carbons, whereas increasing the alcohol carbon chain length from 4 to 8 carbons gave much lower esterification yields. Optimal reaction rate was determined for the synthesis of butyl caprylate (12 carbons). Esterification performance was also dependent on the alcohol structure, with maximum activity occurring for primary alcohol. Secondary and tertiary alcohols decreased the reaction rates by more than 40%.  相似文献   

14.
Oxidative burst is the rapid and transient production of large amounts of reactive oxygen species, including superoxide anion, hydrogen peroxide (H2O2), and hydroxyl radical. A rapid and simple technique was employed for in vivo detection of oxidative burst in oilseed rape (Brassica napus L.) leaves, using a modified electrode. Platinum (Pt) micro-particles were dispersed on a Pt electrode, coated with a poly (o-phenylenediamine) film. This exhibited high sensitivity, selectivity and stability in H2O2 detection. Amperometry was used to obtain satisfactory linear relationships between reductive current intensities and H2O2 concentrations at −0.1 V potential in different electrolytes. This electrode was used in vivo to detect oxidative burst in oilseed rape following fungal infection. Oxidative bursts induced by infection of the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary exhibited notably different mechanisms between a susceptible and a resistant glucose oxidase-transgenic genotype.  相似文献   

15.
Solid-state fermentation (SSF) of inedible parts of rapeseed was carried out using a white-rot fungus, Pleurotus ostreatus, to degrade lignocellulosic material for mycelial-single cell protein (SCP) production. This SSF system has the potential to be adapted to a controlled ecological life support system in space travel owing to the lack of storage space. The system for converting lignocellulosic material to SCP by P. ostreatus is simple; it can be carried out in a compact reactor. The fungal vegetative growth was better with a particle size of plant material ranging from 0.42 to 10 mm, whereas lignin degradation of the lignocellulose was the highest with particle sizes ranging from 0.42 to 0.84 mm. The addition of veratry alcohol (3,4-dimethoxybenzyl alcohol), hydrogen peroxide, and glycerol promotes lignocellulose degradation by P. ostreatus. The enhancement of bioconversion was also observed when a gas-flow bioreactor was used to supply oxygen and to maintain the constant moisture of the reactor. With this reactor, approx 85% of the material was converted to fungal and other types of biomass after 60 d of incubation.  相似文献   

16.
Lipoic acid (LA) and melatonin (MT) are pleiotropic molecules participating in plant stress resistance by modulating cellular biochemical changes, ion homeostasis, and antioxidant enzyme activities. However, the combined role of these two molecules in counteracting the detrimental impacts of salinity stress is still unknown. In the present study, we determined the effects of exogenous LA (0.5 µM), MT (1 µM) and their combination (LA + MT) on growth performance and biomass accumulation, photosynthetic pigments, enzymatic and non-enzymatic antioxidant activities, and ions homeostatic in canola (Brassica napus L.) seedlings under salinity stress (0, 100 mM) for 40 days. The results indicate that exogenous application of LA + MT improved the phenotypic growth (by 25 to 45%), root thickness (by 68%), number of later lateral roots (by 52%), root viability (by 44%), and root length (by 50%) under salinity stress. Moreover, total soluble protein, chlorophyll pigments, the concentration of superoxide dismutase (SOD), catalase peroxidase (CAT), and ascorbic peroxidase (ASA) increased with the presence of salt concentration into the growth media and then decreased with the addition of LA + MT to saline solution. Leaf protein contents and the degradation of photosynthetic pigments were lower when LA + MT treatments were added into NaCl media. The proline and phenol contents decreased in the exogenous application of LA + MT treatments more than individual LA or MT treatments under the salinity stress. The incorporation of LA or MT or a combination of LA + MT to saline solution decreased salinity-induced malondialdehyde and electrolyte leakage. In conclusion, the alteration of metabolic pathways, redox modulation, and ions homeostasis in plant tissues by the combined LA and MT application are helpful towards the adaptation of Brassica napus L. seedlings in a saline environment. The results of this study provide, for the first time, conclusive evidence about the protective role of exogenous LA + MT in canola seedlings under salinity stress.  相似文献   

17.
A simple but novel compound, S-1-methoxy-1-(3,5-dimethoxy-4-hydroxyphenyl)ethane, was isolated as a moderately antioxidative compound from rape (Brassica campestris L. subsp. napus) oil cake together with 5 known compounds. Three of these compounds, indolacetonitrile, 4-hydroxyindolacetonitrile, and 4-hydroxyphenylacetonitrile, showed strong antioxidative activity evaluated by the ferric thiocyanate method.  相似文献   

18.
MCM-41 supported heteropoly acids(HPAs) catalysts were synthesized,characterized and their catalytic activity was evaluated in an aza-Michael addition reaction between nitroolefins and benzotriazole in water at room temperature.50 wt% PW/MCM-41 showed the highest activity(up to 96% yield).The catalyst was used in six consecutive experiments without obvious loss of activity, confirming the success of the anchoring process and the catalyst stability.  相似文献   

19.
Regioselective oligocondensation of cholic acid in the 3-position was achieved in organic solution in the presence of a lipase from Candida antarctica. Furthermore, a mixture of cholic acid, 11-methacryloylaminoundecanoic acid and the lipase resulted in the production of a radically polymerizable oligo(cholic acid ester) bearing exactly one methacrylic end group. This new monomer was polymerized radically yielding the corresponding comb-polymers bearing several cholic acid esters at the end of the side chains.  相似文献   

20.
Nitrogen, oxygen, and sulfur containing heterocycles have a wide range of biological activities. Metal and nonmetal catalysts are used in organic reactions with high activity. New strategies have been developed for the preparation of heterocycles in the last decades. The metal and nonmetal catalyzed synthesis of heterocycles is becoming an important and highly rewarding protocol in organic synthesis. In this review article, the synthesis of seven and higher-membered S-heterocycles is presented with the application of metal and nonmetal catalysts for the period from 1968 to 2018.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号