首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用晶种法直接合成了硅铝比(SiO_2/Al_2O_3物质的量比)为137、224和309的三种Al-ITQ-13分子筛,并采用粉末X射线衍射(XRD)、扫描电镜(SEM)、N_2吸附-脱附、固体核磁共振(MAS NMR)和NH_3-程序升温脱附(NH_3-TPD)等分析方法对不同硅铝比分子筛进行了表征,并在固定床微型反应评价装置上,考察了硅铝比对甲醇转化制丙烯反应性能的影响。结果表明,不同硅铝比Al-ITQ-13分子筛呈现出相似的织构性质,酸量及酸强度随着硅铝比的升高逐渐下降。硅铝比对甲醇转化反应的产物分布存在较大的影响;随着硅铝比的升高,氢转移反应和芳构化反应活性降低,使得乙烯选择性下降,而丙烯和丁烯的选择性升高。硅铝比由137提高到309,丙烯的选择性(质量分数)由46.04%增加到55.52%,而丙烯/乙烯比由3.39提高到6.57。  相似文献   

2.
The complexes M(CO)2(PPh3)3 (I, M = Fe; II, M = Ru) readily react with H2 at room temperature and atmospheric pressure to give cis-M(H)2(CO)2(PPh3)2 (III, M = Fe;IV,M = Ru). I reacts with O2 to give an unstable compound in solution, in a type of reaction known to occur with II which leads to cis-Ru(O2)(CO)2(PPh3)2(V). Even compound IV reacts with O2 to give V with displacement of H2; this reaction has been shown to be reversible and this is the first case where the displacement of H2 by O2 and that of O2 by H2 at a metal center has been observed. III and IV are reduced to M(CO)3(PPh3)2 by CO with displacement of H2; Ru(CO)3- (PPh3)2 is also formed by treatment of IV with CO2, but under higher pressure. Compounds II and IV react with CH2CHCN to give Ru(CH2CHCN)(CO)2- (PPh3)2(VI) which reacts with H2 to reform the hydride IV.cis-Ru(H)2(CO)2(PPh3)2(IV) has been studied as catalyst in the hydrogenation and isomerization of a series of monoenes and dienes. The catalysts are poisoned by the presence of free triphenylphosphine. On the other hand the ready exchange of H2 and O2 on the “Ru(CO)2(PPh3)2” moiety makes IV a catalyst not irreversibly poisoned by the presence of air. It has been found that even Ru(CO)2(PPh3)3(II) acts as a catalyst for the isomerization of hex-1-ene at room temperature under an inert atmosphere.  相似文献   

3.
The reaction of MoO3 with various oxides of manganese (MnO, Mn2O3, Mn3O4 and MnO2) and with MnCO3 has been studied in air and nitrogen atmospheres employing DTA, TG and X-ray diffraction methods, with a view to elucidating the conditions for the formation of MnMoO4. Thermal decomposition of MnCO3 has also been studied in air and nitrogen atmospheres to help understand the mechanism of the reaction between MnCO3 and MoO3. The studies reveal that, whereas MnO, Mn2O3 and MnO2 react smoothly with MoO3 to form MnMoO4, Mn3O4 does not react with MoO3 in the temperature range investigated (48O–6OO°C). An equimolar mixture of MnCO3 and MoO3 reacts in air to yield MnMoO4, while only a mixture of Mn3O4 and MoO3 remains as final product when the same reaction is carried out in nitrogen. Marker studies reveal that manganese ions are the main diffusing species in the reaction between MoO3 and manganese oxides that result in MnMoO4.  相似文献   

4.
The photochemical reaction of piperazine with C70 produces a mono‐adduct (N(CH2CH2)2NC70) in high yield (67 %) along with three bis‐adducts. These piperazine adducts can combine with various Lewis acids to form crystalline supramolecular aggregates suitable for X‐ray diffraction. The structure of the mono‐adduct was determined from examination of the adduct I2N(CH2CH2)2NI2C70 that was formed by reaction of N(CH2CH2)2NC70 with I2. Crystals of polymeric {Rh2(O2CCF3)4N(CH2CH2)2NC70}n?nC6H6 that formed from reaction of the mono‐adduct with Rh2(O2CCF3)4 contain a sinusoidal strand of alternating molecules of N(CH2CH2)2NC70 and Rh2(O2CCF3)4 connected through Rh?N bonds. Silver nitrate reacts with N(CH2CH2)2NC70 to form black crystals of {(Ag(NO3))4(N(CH2CH2)2NC70)4}n?7nCH2Cl2 that contain parallel, nearly linear chains of alternating (N(CH2CH2)2NC70 molecules and silver ions. Four of these {Ag(NO3)N(CH2CH2)2NC70}n chains adopt a structure that resembles a columnar micelle with the ionic silver nitrate portion in the center and the nearly non‐polar C70 cages encircling that core. Of the three bis‐adducts, one was definitively identified through crystallization in the presence of I2 as 12{N(CH2CH2)2N}2C70 with addends on opposite poles of the C70 cage and a structure with C2v symmetry. In 12{I2N(CH2CH2)2N}2C70, individual 12{I2N(CH2CH2)2N}2C70 units are further connected by secondary I2???N2 interactions to form chains that occur in layers within the crystal. Halogen bond formation between a Lewis base such as a tertiary amine and I2 is suggested as a method to produce ordered crystals with complex supramolecular structures from substances that are otherwise difficult to crystallize.  相似文献   

5.
A reinvestigation of the reaction of Ir(CO)Cl(PPh3)2, 1 with HSnPh3 has revealed that the oxidative-addition product Ir(CO)Cl(PPh3)2(H)(SnPh3), 2 has the H and SnPh3 ligands in cis-related coordination sites. Compound 2 reacts with a second equivalent of HSnPh3 by a Cl for H ligand exchange to yield the new compound H2Ir(CO)(SnPh3)(PPh3)2, 3. Compound 3 contains two cis- related hydride ligands. Under an atmosphere of CO, 1 reacts with HSnPh3 to replace the Cl ligand with SnPh3 and one of the PPh3 ligands with a CO ligand and also adds a second equivalent of CO to yield the 5-coordinate complex Ir(CO)3(SnPh3)(PPh3), 4. Compound 4 reacts with HSnPh3 by loss of CO and oxidative addition of the Sn-H bond to yield the 6-coordinate complex HIr(CO)2(SnPh3)2(PPh3), 5 that contains two trans-positioned SnPh3 ligands.  相似文献   

6.

Reactive species generated in the gas and in water by cold air plasma of the transient spark discharge in various N2/O2 gas mixtures (including pure N2 and pure O2) have been examined. The discharge was operated without/with circulated water driven down the inclined grounded electrode. Without water, NO and NO2 are typically produced with maximum concentrations at 50% O2. N2O was also present for low O2 contents (up to 20%), while O3 was generated only in pure O2. With water, gaseous NO and NO2 concentrations were lower, N2O was completely suppressed and HNO2 increased; and O3 was lowered in O2 gas. All species production decreased with the gas flow rate increasing from 0.5 to 2.2 L/min. Liquid phase species (H2O2, NO2 ̄, NO3 ̄, ·OH) were detected in plasma treated water. H2O2 reached the highest concentrations in pure N2 and O2. On the other hand, nitrites NO2 ̄ and nitrates NO3 ̄ peaked between 20 and 80% O2 and were associated with pH reduction. The concentrations of all species increased with the plasma treatment time. Aqueous ·OH radicals were analyzed by terephthalic acid fluorescence and their concentration correlated with H2O2. The antibacterial efficacy of the transient spark on bacteria in water increased with water treatment time and was found the strongest in the air-like mixture thanks to the peroxynitrite formation. Yet, significant antibacterial effects were found even in pure N2 and in pure O2 most likely due to high ·OH radical concentrations. Controlling the N2/O2 ratio in the gas mixture, gas flow rate, and water treatment time enables tuning the antibacterial efficacy.

  相似文献   

7.
Polymeric membrane-based gas separation technology has significant advantages compared with traditional amine-based CO2 separation method. In this work, SEBS block copolymer is used as a polymer matrix to incorporate triethylene oxide (TEO) functionality. The short ethylene oxide segment is chosen to avoid crystallization, which is confirmed by differential scanning calorimetry and wide-angle X-ray scattering characterizations. The gas permeability results reveal that CO2/N2 selectivity increased with increasing content of TEO functional group. The highest CO2 permeability (281 Barrer) and CO2/N2 selectivity (31) were obtained for the membrane with the highest TEO incorporation (57 mol%). Increasing the TEO content in these copolymers results in an increase in CO2 solubility and a decrease in C2H6 solubility. For example, as the grafted TEO content increased from 0 to 57 mol%, the CO2 solubility and CO2/C2H6 solubility selectivity increased from 0.72 to 1.3 cm3(STP)/cm3 atm and 0.47 to 1.3 at 35°C, respectively. The polar ether linkage in TEO-grafted SEBS copolymers exhibits favorable interaction with CO2 and unfavorable interaction with nonpolar C2H6, thus enhancing CO2/C2H6 solubility selectivity.  相似文献   

8.
The reactivity of neodymium diiodide, NdI2 ( 1 ), towards organosilicon, ‐germanium and ‐tin halides has been investigated. Compound 1 readily reacts with Me3SiCl in DME to give trimethylsilane (6 %), hexamethyldisilane (4 %) and (Me3Si)2O (19 %). The reaction with Et3SiBr in THF results in formation of Et3SiSiEt3 (17 %) and Et3SiOBun (34 %). Alkylation of Me3SiCl with PrnCl in the presence of 1 in THF affords Me3SiPrn (10 %), Me3SiOBun (52 %) and Me3SiSiMe3 (1 %). The main product identified in the reaction mixture formed upon interaction of 1 with dichlorodimethylsilane Me2SiCl2 in THF is di‐n‐butoxydimethylsilane Me2Si(OBun)2 (54 %) together with minor amounts of Me2Si(OBun)Cl. The reaction of 1 with Me3GeBr under the same conditions produces Me3GeGeMe3 (44 %), Me3GeH (3 %), and Me3GeI (7 %). An analogous set of products was obtained in the reaction with Et3GeBr. Treatment of trimethyltin chloride with 1 causes reduction of the former to tin metal (74 %). Me3SnH (7 %) and hexamethyldistannane (11 %) were identified in the volatile products. The reaction of 1 with Me3SiI provides straightforward access to hepta‐coordinated NdI3(THF)4 ( 2 ), the structure of which was determined by X‐ray diffraction.  相似文献   

9.
The bridging fluoroolefin ligands in the complexes [Ir2(CH3)(CO)2(μ‐olefin)(dppm)2][OTf] (olefin=tetrafluoroethylene, 1,1‐difluoroethylene; dppm=μ‐Ph2PCH2PPh2; OTf?=CF3SO3?) are susceptible to facile fluoride ion abstraction. Both fluoroolefin complexes react with trimethylsilyltriflate (Me3SiOTf) to give the corresponding fluorovinyl products by abstraction of a single fluoride ion. Although the trifluorovinyl ligand is bound to one metal, the monofluorovinyl group is bridging, bound to one metal through carbon and to the other metal through a dative bond from fluorine. Addition of two equivalents of Me3SiOTf to the tetrafluoroethylene‐bridged species gives the difluorovinylidene‐bridged product [Ir2(CH3)(OTf)(CO)2(μ‐OTf)(μ‐C?CF2)(dppm)2][OTf]. The 1,1‐difluoroethylene species is exceedingly reactive, reacting with water to give 2‐fluoropropene and [Ir2(CO)2(μ‐OH)(dppm)2][OTf] and with carbon monoxide to give [Ir2(CO)3(μ‐κ12‐C?CCH3)(dppm)2][OTf] together with two equivalents of HF. The trifluorovinyl product [Ir21‐C2F3)(OTf)(CO)2(μ‐H)(μ‐CH2)(dppm)2][OTf], obtained through single C? F bond activation of the tetrafluoroethylene‐bridged complex, reacts with H2 to form trifluoroethylene, allowing the facile replacement of one fluorine in C2F4 with hydrogen.  相似文献   

10.
The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2 (Z=CO, N2, and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3 molecule (X=H, F, and CH3), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2 and BH(CNH)2, and their fluorosubstituted analogues BF(CO)2 and BF(CNH)2, engage in a typical noncovalent bond with B(CH3)3 and BF3, with interaction energies in the 3–8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26–44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3 is added to BH(CO)2, BH(CNH)2, BH(N2)2, and BF(CO)2, or in the complexes of BH(N2)2 with B(CH3)3 and BF3. The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones.  相似文献   

11.
The reaction of CdCl2 or CdBr2with LiBH4, in ether yields no pure Cd(BH4)2, but Li2Cd(BH4)4 was isolated as an oily etherate. Similarly, NaCd(BH4)3 was obtained from CdCl2 and NaBH4 in ether and tetrahydrofurane as solvents. LiCd(BH4)3 and NaCd(BH4)3 were also formed from the components in ether solution. In these solutions Cd migrates to the anode confirming their formulation as tetrahydroborato-cadmates. Cadmiumtetrahydroborate was formed in the reaction of cadmium methoxide with diborane in tetrahydrofurane (THF) and isolated as crystalline solvates. It reacts with pyridine to give Cd(BH4)2 · 3 NC5H5 and with NH3 to yield Cd(NH3)6(BH4)2.  相似文献   

12.
Samples in the system Lu2−xYxSi2O7 (0?x?2) have been synthesized following the sol-gel method and calcined to 1300 °C, a temperature at which the β-polymorph is known to be the stable phase for the end-members Lu2Si2O7 and Y2Si2O7. The XRD patterns of all the compositions studied are compatible with the structure of the β-polymorph. Unit cell parameters are calculated as a function of composition from XRD patterns. They show a linear change with increasing Y content, which indicates a solid solubility of β-Y2Si2O7 in β-Lu2Si2O7 at 1300 °C. 29Si MAS NMR spectra of the different members of the system agree with the XRD results, showing a linear decrease of the 29Si chemical shift with increasing Y content. Finally, a correlation reported in the literature to predict 29Si chemical shifts in silicates is applied here to obtain the theoretical variation in 29Si chemical shift values in the system Lu2Si2O7-Y2Si2O7 and the results compare favorably with the values obtained experimentally.  相似文献   

13.
The reactions of [Co2(CO)8] with E(SiMe3)2 (E = Se, Te) in CH2Cl2 result in the formation of the compounds [Co4Se2(CO)10]> ( 1 ) and [Co4Te2(CO)11] ( 2 ), respectively. Both cluster complexes have similar molecular structures in which the cobalt atoms form four‐membered rings with μ4‐bridging chalcogen atoms (Se and Te) above and below the plane of the metal atoms and the carbonyl ligands as either terminal or μ2‐bridging ligands. DFT‐calculations for both compounds have been carried out in order to obtain some more information about their electronic distribution. In the presence of the phosphine Ph2PC≡CPPh2 (dppa), the reaction of [Co2(CO)8] with Se(SiMe3)2 leads to the formation of [Co8Se4(CO)16(μ‐dppa)2] ( 3 ). During the reaction two molecules of [Co2(CO)8] have been added to the acetylene groups of the dppa ligands, whilst the remaining cobalt atoms coordinate to the phosphorus atoms of the phosphine. In this compounds the selenium atoms act as μ3‐ligands, bridging the metal atoms bonded to the phosphorus with those bonded to the acetylene groups.  相似文献   

14.
The finding that compounds of the type (Me3Si)2(PhMe2Si)CSiMePhX react with electrophiles to give very predominantly rearranged products (Me3Si)2(Ph2MeSi)CSiMe2Y, which would be expected to be thermodynamically disfavoured, can be rationalized in terms of a mechanism in which the anchimerically-assisted departure of X gives the Ph-bridged cation [(Me3Si)2

MePh]+ which is attacked by the nucleophile at the less hindered centre bearing two Me groups rather than that bearing one Me and one Ph group, with the outcome determined by kinetic rather than thermodynamic factors. Both (Me3Si)2(Ph2MeSi)CSiMe2Br and its isomer (Me3Si)2(PhMe2Si)CSiMePhBr react with AgBF4 in CH2Cl2 or Et2O to give >95% of the fluoride (Me3Si)2(Ph2MeSi)CSiMe2F. Reaction of the bromide (Me3Si)2(PhMe2Si)CSiMePhBr with AgO2CCF3 in Et2O, and that of the hydride (Me3Si)2(PhMe2Si)CSiMePhH with ICl in CCl4, likewise give >95% of the rearranged (Me3Si)2(Ph2MeSi)CSiMe2O2CCF3 and (Me3Si)2(Ph2MeSi)CSiMe2Cl, respectively.  相似文献   

15.
Synthesis and Reactivity of the Diphenylphosphanyltrimethylsilylamine Ph2PN(H)SiMe3 The trimethylsilyliminotriphenylphosphoran Ph3P=NSiMe3 ( 1 ) reacts with sodium in THF under cleavage of one P–Cphenyl bond leading to the PIII‐species [(THF)3Na(Ph2PNSiMe3)] ( 2 ). Reaction with NH4Br or hydrolysis with water gives the diphenylphosphanyltrimethylsilylamine Ph2PN(H)SiMe3 ( 3 ) and in low yields the oxidized byproduct [(THF)Na(OOPPh2)]n ( 4 ) that can be synthesised directly in high yields in the reaction of Ph2POOH and NaH in THF. 3 was reacted with an equimolar amount of Zn{N(SiMe3)2}2 to give [(Me3Si)2NZnPh2PNSiMe3]2 ( 5 ). 3 reacts with caesium under phosphorus‐phosphorus bond formation in a reductive substituent coupling reaction to give [(THF)Cs2{Ph(NSiMe3)P}2]n ( 6 ) where phosphorus(III) is reduced to phosphorus(II). Phosphorus‐phosphorus bond formation to give (Ph2PNSiMe3)2 ( 7 ) where the phosphorus(III) centres are oxidized to PIV is observed in the reaction of 3 with n‐BuLi and bismuthtrichloride.  相似文献   

16.
Reactions of Phosphorus(Arsenic)chalcogenides with Phosphorus(Arsenic)triiodide The specific heats and enthalpies of melting of the tetraphosphorustrithio(seleno)-diiodides have been determined. For the preparation of β-P4S3I2 a new mthod by reacting P4S3 with PI3 in CS2 solution was found. Experiments to prepare compounds of the type As4S3I2 by the classical methods for the preparation of the resp. phosphorus compounds failed. The reaction of As4S3 with AsI3 leads to the formation of As4S4. The other sulphides of the As? S system As2S3 and As4S4 react with AsI3 to AsSI, however, in the reaction of As4S4 the addition of S is necessary.  相似文献   

17.
Here a unique single-crystal-to-single-crystal (SCSC) transformation of a 116-nuclear AuI72CdII40NaI4 cage-of-cage ( 2 CdNa) is reported, which was created from a trigold(I) metalloligand with d -penicillamine by way of a 9-nuclear AuI6CdII3 cage ( 1 ). Cage-of-cage 2 CdNa is composed of 12 cages of 1 that are linked by 4 Cd2+ and 4 Na+ ions, with its surface being covered by 12 NO3 ions to form a discrete, spherical molecule with a diameter ca. 4.7 nm. In crystal 2 CdNa, the cage-of-cage molecules are packed in a cubic lattice with a huge cell volume of ca. 4.5×105 Å3, so as to have large interstices with diameters of more than 3 nm. Upon soaking crystals 2 CdNa in aqueous Cu(NO3)2, all Cd2+ and Na+ were quickly exchanged by Cu2+ to produce an analogous AuI72CuII44 cage-of-cage ( 2 Cu) in a SCSC manner. Prolonged soaking led to the SCSC transformation to another supramolecular structure ( 2′ Cu) consisting of 152-nuclear AuI72CuII80 cage-of-cages that are alternately H-bonded with the AuI72CuII44 cage-of-cages. 2′ Cu showed the accommodation of MoO42− and the conversion of MoO42− to β-Mo8O264− in the crystal, with retention of single-crystallinity.  相似文献   

18.
As12Se44—: a New Selenoarsenate Anion with a Polyarsenic Cage in the Compound [Co(NH3)6]2As12Se4 · 12 NH3 Orange coloured crystals of [Co(NH3)6]2As12Se4 · 12 NH3 were prepared by the reduction of As4Se4 with a solution of sodium in liquid ammonia and subsequent precipitation with CoBr2. The X‐ray structure determination shows them to contain the selenoarsenate anion As12Se44—, which consists of a central As12‐cage with four exo‐bonded, formally negatively charged Se atoms. The structure of the As12‐cage is equivalent to the main polyphosphorus building unit of a known organopolyphosphane and of tubular P12 in the compound (CuI)3P12.  相似文献   

19.
The reactions of naphthalene in N2O5? NO3? NO2? N2? O2 reactant mixtures have been investigated over the temperature range 272–297 K at ca. 745 torr total pressure and at 272 K and ca. 65 torr total pressure using long pathlength Fourier transform infrared absorption spectroscopy. 2,3-Dimethyl-2-butene was added to the reactant mixtures at 272 K to rapidly scavenge the NO3 radicals both initially present in the added N2O5 and formed from the thermal decomposition of N2O5 during the reactions. The data obtained in the presence and absence of added 2,3-dimethyl-2-butene showed that napthalene undergoes initial reaction with the NO3 radical to form an NO3-naphthalene adduct, which either rapidly decomposes back to the reactants (at a rate of ca. 5 × 105 s?1 at 298 K) or reacts exclusively with NO2 to form products. When NO3 radicals, N2O5 and NO2 are in equilibrium, this overall process is kinetically equivalent to reaction of naphthalene with N2O5, and previous kinetic and product studies have indeed assumed the reactions of naphthalene and alkyl-substituted naphthalenes in N2O5? NO3? NO2? air mixtures to be with N2O5, and not with NO3 radicals.  相似文献   

20.
Eu5Ge3 and EuIrGe2 were prepared from the elements in tantalum tubes, and their crystal structures were determined from single crystal X-ray data. Eu5Ge3 adopts the structure of Cr5B3: I4/mcm, a = 799.0(1)pm, c = 1 536.7(1)pm, Z = 4, wR2 = 0.0421 for 669 F2 values and 16 variables. The structure of Eu5Ge3 contains isolated germanium atoms and germanium atom pairs with a Ge? Ge distance of 256.0 pm. Eu5Ge3 may be described as a Zintl phase with the formulation [5 Eu2+]10+[Ge]4?[Ge2]6?. Magnetic investigations of Eu5Ge3 show Curie-Weiss behaviour above 50 K with a magnetic moment of μexp = 7.6(1) μB which is close to the free ion value of μeff = 7.94 μB for Eu2+. EuIrGe2 is isotypic with CeNiSi2: Cmcm, a = 445.5(2) pm, b = 1 737.4(4) pm, c = 426.6(1) pm, Z = 4, wR2 = 0.0507 for 295 F2 values and 18 variables. The structure of EuIrGe2 is an intergrowth of ThCr2Si2-like slabs with composition EuIr2Ge2 and AlB2-like slabs with composition EuGe2 in an AB stacking sequence. Both slabs are distorted when compared to the symmetry of the prototypes. The Ge? Ge distance of 256.6 pm in the AlB2-like fragment is comparable to that in Eu5Ge3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号