首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Nanocrystalline mesoporous TiO2 was synthesized by hydrothermal method using titanium butoxide as starting material. XRD, SEM, and TEM analyses revealed that the synthesized TiO2 had anatase structure with crystalline size of about 8 nm. Moreover, the synthesized titania possessed a narrow pore size distribution with average pore diameter and high specific surface area of 215 m2/g. The photocatalytic activity of synthesized TiO2 was evaluated with photocatalytic H2 production from water-splitting reaction. The photocatalytic activity of synthesized TiO2 treated with appropriate calcination temperature was considerably higher than that of commercial TiO2 (Ishihara ST-01). The utilization of mesoporous TiO2 photocatalyst with high crystallinity of anatase phase promoted great H2 production. Furthermore, the reaction temperature significantly influences the water-splitting reaction.  相似文献   

2.
Na+ complex with the dibenzo-18-crown-6 ester was used as a template to synthesize mesoporous titanium dioxide with the specific surface area 130–140 m2/g, pore diameter 5–9 nm and anatase content 70–90%. The mesoporous TiO2 samples prepared were found to have photocatalytic activity in CuII, NiII and AgI reduction by aliphatic alcohols. The resulting metal–semiconductor nanostructures have remarkable photocatalytic activity in hydrogen evolution from water–alcohol mixtures, their efficiency being 50–60% greater than that of the metal-containing nano-composites based on TiO2 Degussa P25.The effects of the thermal treatment of mesoporous TiO2 upon its photocatalytic activity in hydrogen production were studied. The anatase content and pore size were found to be the basic parameters determining the photoreaction rate. The growth of the quantum yield of hydrogen evolution from TiO2/Ag0 to TiO2/Ni0 to TiO2/Cu0 was interpreted in terms of differences in the electronic interaction between metal nanoparticles and the semiconductor surface. It was found that there is an optimal metal concentration range where the quantum yield of hydrogen production is maximal. A decrease in the photoreaction rate at further increment in the metal content was supposed to be connected with the enlargement of metal nanoparticles and deterioration of the intimate electron interaction between the components of the metal–semiconductor nanocomposites.  相似文献   

3.
Highly photoactive bi-phase nanocrystalline TiO2 photocatalyst was prepared by a solvent evaporation-induced crystallization (SEIC) method, and calcined at different temperatures. The obtained TiO2 photocatalyst was characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface areas. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air. The results show that solvent evaporation can promote the crystallization and phase transformation of TiO2 at 100°C. When calcination temperatures are below 600°C, the prepared TiO2 powders show bimodal pore size distributions in the mesoporous region. At 700°C, the pore size distributions exhibit monomodal distribution of the inter-aggregated pores due to the collapse of the intra-aggregated pores. At 100°C, the obtained TiO2 photocatalyst by this method shows good photocatalytic activity, and at 400°C, its photocatalytic activity exceeds that of Degussa P25. This may be attributed to the fact that the prepared TiO2 photocatalyst has higher specific surface areas, smaller crystallite size and bimodal pore size distribution.  相似文献   

4.
Anatase phase mesoporous TiO2 with I41/amd space group was synthesized via the urea assisted hydrothermal method. The existence of mono phasic TiO2 sub-microspheres of uniform particle size (ca. 400 nm) encompassing an average crystallite size of 14 nm was demonstrated using the XRD, FE-SEM and TEM analysis. Surface area of ca. 116.49 m2/g along with a pore size of 7 nm was calculated using the BET and adsorption isotherm measurements which authenticated the mesoporous nature of the synthesized material. Suitable calcination temperature for the better electrochemical property was established via the optimization process. Accordingly, the mesoporous TiO2 calcined at 400 °C displayed improved cycleability with excellent rate capability ever reported, even at 20 C-rate of discharge. The reason for the superior rate capability is corroborated to the highly mesoporous nature of the TiO2 sub-microspheres that has imparted desirable surface area apposite for enhanced ionic and electronic diffusion.  相似文献   

5.
Ultrasonic spray pyrolysis method was used to prepare Nb-doped TiO2 porous microspheres with an average diameter of 500 nm for solar photocatalytic applications. The effect of Nb-doping on morphology, structure, surface area, as well as spectral absorption properties of TiO2 microspheres was investigated with SEM, TEM, XRD, Raman spectra, BET, and UV-Vis absorption spectra. The Nb-doping decreased the grain size of TiO2 porous microsphere, and influenced its surface area and pore size distribution dependent on the doping concentration, but changed negligibly the morphology and size of TiO2 microspheres. Moreover, the Nb-doping was observed to extend the spectral absorption of TiO2 into visible spectrum, and the absorption onset was red-shifted for about 88 nm at a doping level of 5% compared to pristine TiO2 microspheres. Under solar or visible irradiation, Nb-doped TiO2 microspheres showed higher photocatalytic activity for methylene blue degradation compared with TiO2 microspheres, which could be ascribed to the extended light absorption range and the suppression of electron-hole pair recombination.  相似文献   

6.
Using composite surfactant templates, polyoxyethylene (20) oleyl ether (Brij98) and cetyl trimethyl ammonium bromide (CTAB), as structure-directing agents, N and La co-doped mesoporous TiO2 complex photocatalysts were synthesized successfully. The micromorphology of co-doped mesoporous TiO2 samples was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FT-IR), energy-dispersive X-ray spectrometer (EDS) and N2 adsorption-desorption measurements. The results indicated that the complex photocatalyst prepared with a molar ratio of Brij98:CTAB=1:1 showed a uniform pore size of ca. 7 nm and a high specific surface area (SBET) of 279.0 m2 g−1, and exhibited the highest photocatalytic activity for degradation of papermaking wastewater under ultra-violet light irradiation. The chemical oxygen demand (CODcr) percent degradation was about 73% in 12 h and chroma percent degradation was 100% in 8 h.  相似文献   

7.
Nanoscale anatase TiO2 single crystals were successfully synthesized using three kinds of activated carbon (AC) templates through a simple sol–gel method. The optimal photocatalyst (T‐WOAC) was obtained using wood‐based AC template. X‐ray diffraction, transmission electron microscopy and Brunauer–Emmett–Teller analyses revealed that T‐WOAC possessed a small crystallite size of 8.7 nm and a clear mesoporous structure. The photocatalytic properties of samples were then evaluated through photodegradation of crystal violet (CV). Results implied that the photocatalysts prepared using the AC templates exhibited superior photocatalytic activity to that of the original TiO2. This enhancement may be due to the small crystallite size, large specific surface area and pore volume of the catalysts prepared with ACs. T‐WOAC showed high photocatalytic activity, CV degradation of 99.01% after 120 min of irradiation and k = 0.03914 min?1, which is 3.9 times higher than that of the original TiO2 (k = 0.00994 min?1). This result can be mainly attributed to the application of WOAC with moderate specific surface area and pore volume to produce T‐WOAC. Alkaline conditions benefitted the photodegradation of CV over photocatalysts. This work proposes a possible degradation mechanism of CV and indicates that the fabricated photocatalysts can be used to effectively remove CV from aqueous solutions.  相似文献   

8.
Nanocrystalline Fe-doped TiO2 powders were prepared using TiOSO4, urea, and Fe(NO3)3 · 9H2O as precursors through a hydrothermal method. The as-synthesized yellowish-colored powders are composed of anatase TiO2, identified by X-ray diffraction (XRD). The grain size ranged from 9.7 to 12.1 nm, calculated by Scherrer’s method. The specific surface area ranged from 141 to 170 m2/g, obtained by the Brunauer–Emmett–Teller (BET) method. The transmission electron microscopy (TEM) micrograph of the sample shows that the diameter of the grains is uniformly distributed at about 10 nm, which is consistent with that calculated by Scherrer’s method. Fe3+ and Fe2+ have been detected on the surface of TiO2 powders by X-ray photoelectron spectroscopy (XPS). The UV–Vis diffuse reflection spectra indicate that the light absorption thresholds of the Fe-doped TiO2 powders have been red-shifted into the visible light region. The photocatalytic activity of the Fe-doped TiO2 was evaluated through the degradation of methylene blue (MB) under visible light irradiation. The Fe-doped TiO2 powders have shown good visible-light photocatalytic activities and the maximum degradation ratio is achieved within 4.5 h.  相似文献   

9.
In the present work, we report on the formation of mesoporous thick tungsten trioxide films grown on tungsten foil by anodization in fluoride containing concentrated phosphoric acid (85%) electrolyte. Under optimized experimental conditions, mesoporous WO3 films with a thickness up to approximately 2 μm are formed. SEM shows the films to consist of a connected network with a typical pore and feature diameter of ca 50 nm. These films as formed are amorphous and can be annealed to orthorhombic WO3 structure. These thick porous films can show significant enhanced electrochromic and improved photocatalytic properties.  相似文献   

10.
Ordered mesoporous TiO2 materials with an anatase frameworks have been synthesized by using a cationic surfactant cetyltrimethylammonium bromide (C16TMABr) as a structure-directing agent and soluble peroxytitanates as Ti precursor through a self-assembly between the positive charged surfactant S+ and the negatively charged inorganic framework I? (S+I? type). The low-angle X-ray diffraction (XRD) pattern of the as-prepared mesoporous TiO2 materials indicates a hexagonal mesostructure. XRD and transmission electron microscopy results and nitrogen adsorption–desorption isotherms measurements indicate that the calcined mesoporous TiO2 possesses an anatase crystalline framework having a maximum pore size of 6.9 nm and a maximum Brunauer–Emmett–Teller specific surface area of 284 m2 g?1. This ordered mesoporous anatase TiO2 also demonstrates a high photocatalytic activity for degradation of methylene blue under ultraviolet irradiation.  相似文献   

11.
Lanthanum doped mesoporous titanium dioxide photocatalysts with different La content were synthesized by template method using tetrabutyltitanate (Ti(OC4H9)4) as precursor and Pluronic P123 as template. The catalysts were characterized by thermogravimetric dif-ferential thermal analysis, N2 adsorption-desorption measurements, X-ray diffraction, and UV-Vis adsorption spectroscopy. The effect of La3+ doping concentration from 0.1% to 1% on the photocatalytic activity of mesoporous TiO2 was investigated. The characterizations indicated that the photocatalysts possessed a homogeneous pore diameter of about 10 nm with high surface area of 165 m2/g. X-ray photoelectron spectroscopy measurements in-dicated the presence of C in the doped samples in addition to La. Compared with pure mesoporous TiO2, the La-doped samples extended the photoabsorption edge into the visible light region. The results of phenol photodecomposition showed that La-doped mesoporous TiO2 exhibited higher photocatalytic activities than pure mesoporous TiO2 under UV and visible light irradiation.  相似文献   

12.
Red mud wastes have been converted into mesoporous zeolite socony mobile-5 (ZSM-5) followed by deposited titanium dioxide (TiO2) nanoparticles to generate synergy adsorption-photodegradation for removal of dye removal in waste water. The amount of TiO2 loading was varied to achieve optimum photocatalytic activity while maintaining the mesoporosity and high surface area of ZSM-5. Sol-gel method facilitated the formation of anatase TiO2 on the ZSM-5. The fourier transform infrared spectra clarified the formation of Si–O–Ti at 957 cm?1 by the exchanging the hydrogen ion with titanium ion, which proved by decreasing the absorption band of Si–OH and Si–O interaction at 964 and 944 cm?1, respectively. Sol-gel method also preserved the mesopore diameter of ZSM-5 at 3.5 nm which allow the diffusion of methylene blue (MB) molecules into the pores. However, the surface area and the pore volume were slightly reduced with increasing the TiO2 loading. The adsorption performance of samples showed that the increasing in the TiO2 loading led to the decreasing in the adsorption capacity. All samples showed the suitability towards the pseudo second order kinetic. The Langmuir isotherm was suitable to describe the adsorption mechanism by monolayer adsorption. Mesoporosity of ZSM-5 accelerated the adsorption of dye via the increase of mass transfer in the pore channel which confirmed by the low intercept of intraparticle diffusion model at the first stage. The photocatalytic test showed that 10% TiO2 loading on the ZSM-5 exhibited the highest methylene blue removal followed by 5% and 20% TiO2 loading. Optimization on the amount of photocatalyst and the pH of solution indicated the reaction favoured 1 g L?1 of catalysts and at alkaline pH. 10% TiO2/ZSM-5 also exhibited high stability and reusability up to four reaction cycles. Photocatalytic performance of 10% TiO2/ZSM-5 was further investigated on photodegradation of malachite green and rhodamine B organic dyes, which showed the photocatalytic efficiency of 73 and 88%, respectively. Superoxide radical, hydroxyl radical, and photogenerated electron were identified as the main active species for MB photodegradation based on the reduction of degradation rate following the addition scavenger molecules.  相似文献   

13.
Guoqing Chang 《Acta Physico》2008,24(10):1790-1797
This study investigated the coaxial electrospinning process of silver filling in TiO2 ultrafine hollow fibers using polyvinyl pyrrolidone (PVP) sol/titanium n-butyloxide (Ti(OC4H9)4) and PVP sol/silver nanoparticles as pore-directing agents. The bicomponent fibers were heat treated at 200 °C and calcined at 600 °C. Silver particles having diameters of 5 to 40 nm were deposited on the inner surface of the long hollow TiO2 nanofibers (outer diameter of 150.300 nm) with mesoporous walls (thickness of 10.20 nm). The morphological structure of the filled ultrafine hollow fibers has been studied by means of infrared (IR) spectrum, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The diameters and wall thicknesses of the hollow fibers could be tuned by adjusting the electrospinning parameters. Compared with other nanostructured TiO2 materials, such as mesoporous Ag-TiO2 blending fibers, TiO2 hollow nanofibers, TiO2 nanofibers, and TiO2 powders, the silver filled TiO2 hollow fibers exhibited a higher photocatalytic activity toward the degradation of methylene blue.  相似文献   

14.
This communication demonstrates the first work on anodic composite deposition of oxide nanocomposites. Rutile TiO2 nanoflowers with an average petal size of ca. 10 nm in diameter and 100 nm in length were synthesized from a TiCl3 solution purged with air at 25 °C for 12 days prior to the composite deposition. Hydrous ruthenium oxide (RuO2·xH2O) and TiO2 nanoflowers were composite-deposited onto Ti substrates for supercapacitors. In comparing with RuO2·xH2O deposits, RuO2·xH2O–TiO2 nanocomposites with a highly porous nature exhibit the weakly mass-dependent specific capacitance and high-power capacitive characteristics.  相似文献   

15.
Thermally stable mesoporous TiO2/SiO2 hybrid films with pore size of 50 nm have been synthesized by adopting the polymeric micelle‐assembly method. A triblock copolymer, poly(styrene‐b‐2‐vinyl pyridine‐b‐ethylene oxide), which serves as a template for the mesopores, was utilized to form polymeric micelles. The effective interaction of titanium tetraisopropoxide (TTIP) and tetraethyl orthosilicate (TEOS) with the polymeric micelles enabled us to fabricate stable mesoporous films. By changing the molar ratio of TEOS and TTIP, several mesoporous TiO2/SiO2 hybrid films with different compositions can be synthesized. The presence of amorphous SiO2 phase effectively retards the growth of anatase TiO2 crystal in the pore walls and retains the original mesoporous structure, even at higher temperature (650 °C). These TiO2/SiO2 hybrid films are of very high quality, without any cracks or voids. The addition of SiO2 phase to mesoporous TiO2 films not only adsorbs more organic dyes, but also significantly enhances the photocatalytic activity compared to mesoporous pure TiO2 film without SiO2 phase.  相似文献   

16.
以钛粉、钽粉为原料,炭黑作为反应性模板,通过熔盐法在炭黑表面原位生长了TaTiC2纳米碳化物涂层,并以所得TaTiC2/C复合物为碳化物前驱体,再经可控氧化制备出中空Ta2O5/TiO2复合光催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)漫反射(DRS)及N2物理吸附等手段对所制备的光催化剂进行形貌、显微结构及孔结构表征。以高压汞灯为紫外光源,以亚甲基蓝为目标降解物,通过光催化降解实验评价中空Ta2O5/TiO2复合光催化剂的光催化活性。结果表明,熔盐法生长碳化物涂层厚度均匀(20~30 nm),碳化物主要以TaTiC2晶相存在且具有纳米级的颗粒尺寸。中空Ta2O5/TiO2复合光催化剂同时具有200 nm左右的中空大孔结构及壳层10 nm左右的介孔结构。中空大孔和介孔的存在提高了所制备催化剂对亚甲基蓝的吸附能力。此外,TiO2与Ta2O5通过电子能带结构的耦合,有效提高了光生电子和空穴的分离效率,从而显著提高了光催化活性。nTinTa=2.5∶1.5时,相应的中空Ta2O5/TiO2复合光催化剂表现出最佳的光催化活性,对亚甲基蓝的紫外光催化降解率高达97%。  相似文献   

17.
Nitrogen and lanthanum co-doped titania photocatalysts were prepared by a modified sol–gel process with urea and lanthanum nitrate doping precursors and characterized by various techniques including XRD, FTIR, TEM, EDS, and UV–Vis DRS. The average crystallite size was ca. 12–15 nm as calculated from XRD patterns, and anatase was the dominant crystalline type in the as-prepared samples. The UV–Vis DRS of the samples revealed significant absorption within the range of 400–500 nm. The optimum composition of N(0.020)La(0.012)TiO2 exhibited the highest photocatalytic activity for degradation of methyl orange (MO) aqueous solution under simulated sunlight. The percent degradation of MO was ca. 97% for N(0.020)La(0.012)TiO2 under simulated sunlight irradiation for 9 h. The enhanced photocatalytic activity was ascribed to the synergistic effects of the nitrogen and lanthanum co-doping.  相似文献   

18.
TiO2–carbon nanotube (CNT) heterojunction arrays on Ti substrate were fabricated by a two-step thermal chemical vapor deposition (CVD) method. CNT arrays were first grown on Ti substrate vertically, and then a TiO2 layer, whose thickness could be controlled by varying the deposition time, was deposited on CNTs. Measured by electrochemical impedance spectroscopy (EIS), the thickness of the TiO2 layer could affect the photoresponse ability significantly. About 100 nm thickness of the TiO2 layer proved to be best for efficient charge separation among the tested samples. The optimized TiO2–CNT heterojunction arrays displayed apparently higher photoresponse capability than that of TiO2 nanotube arrays which was confirmed by surface photovoltage (SPV) technique based on Kelvin probe and EIS. In the photocatalytic experiments, the kinetic constants of phenol degradation with TiO2–CNT heterojunctions and TiO2 nanotubes were 0.75 h−1 (R2 = 0.983) and 0.39 h−1 (R2 = 0.995), respectively. At the same time, 53.7% of total organic carbon (TOC) was removed with TiO2–CNT heterojunctions, while the removal of TOC was only 16.7% with TiO2 nanotubes. These results demonstrate the super capability of the TiO2–CNT heterojunction arrays in photocatalysis with comparison to TiO2-only nanomaterial.  相似文献   

19.
以钛粉、钽粉为原料,炭黑作为反应性模板,通过熔盐法在炭黑表面原位生长了TaTiC_2纳米碳化物涂层,并以所得TaTiC_2/C复合物为碳化物前驱体,再经可控氧化制备出中空Ta_2O_5/TiO_2复合光催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)漫反射(DRS)及N2物理吸附等手段对所制备的光催化剂进行形貌、显微结构及孔结构表征。以高压汞灯为紫外光源,以亚甲基蓝为目标降解物,通过光催化降解实验评价中空Ta_2O_5/TiO_2复合光催化剂的光催化活性。结果表明,熔盐法生长碳化物涂层厚度均匀(20~30 nm),碳化物主要以TaTiC_2晶相存在且具有纳米级的颗粒尺寸。中空Ta_2O_5/TiO_2复合光催化剂同时具有200 nm左右的中空大孔结构及壳层10 nm左右的介孔结构。中空大孔和介孔的存在提高了所制备催化剂对亚甲基蓝的吸附能力。此外,TiO_2与Ta2O5通过电子能带结构的耦合,有效提高了光生电子和空穴的分离效率,从而显著提高了光催化活性。nTi∶nTa=2.5∶1.5时,相应的中空Ta_2O_5/TiO_2复合光催化剂表现出最佳的光催化活性,对亚甲基蓝的紫外光催化降解率高达97%。  相似文献   

20.
Samples of mesoporous TiO2 containing 80-85% of anatase and 15-20% of rutile with average particle and pore sizes of ∼10 nm and specific surface areas of 70 m2/g were obtained. The nanohetero structures TiO2/Cu formed during photocatalytic reduction of CuII exhibit photocatalytic activity in the release of hydrogen from water–ethanol mixtures. The quantum yield with respect to atomic hydrogen amounts to 1.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号