首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 468 毫秒
1.
通过开展不同爆距下水下爆炸对沉箱重力式码头模型毁伤效应试验,对水下荷载进行了采集分析,对毁伤因素、毁伤模式和毁伤机理开展了研究,初步讨论了爆距的影响。结果表明:试验中未形成完整的气泡脉动过程,荷载超压主要出现在冲击波传播阶段,爆炸冲击波、水底反射波和侧壁反射波是主要的毁伤因素;水下爆炸对沉箱重力式码头造成的毁伤程度大、模式多、机理复杂,主要毁伤部位为迎爆面外墙、迎爆侧管沟、封仓板和面板;爆距越近码头毁伤越严重;当爆距过近时,爆炸能量被迎爆面结构变形大量吸收,迎爆面毁伤程度大幅增大,码头其他部位毁伤程度增幅放缓。  相似文献   

2.
船用加筋板架爆炸载荷下动态响应数值分析   总被引:15,自引:0,他引:15  
针对船用加筋板架复杂结构在爆炸冲击波作用下的动态响应 ,采用商用高动态非线性有限元程序MSC/Dytran ,讨论了大尺寸加强结构板架迎爆承载问题 ,提出了复杂板架结构爆炸冲击波作用下动态响应的有限元计算方法 ,并进行了模型试验。试验结果与计算结果吻合较好 ,验证了应用程序及计算模型参数的稳定性和可靠性。对加筋板架两种承载形式 (大尺寸加强构件迎爆或背爆设置 )在爆炸冲击波作用下的动态响应 (板架中心挠度和塑性分布 )差异的分析研究表明 ,大尺寸骨架 (纵骨和肋骨 )背向爆炸冲击波设置将分散爆炸冲击波的冲击作用、减小板架变形、增强其抵抗爆炸冲击波冲击的能力 ,使结构偏于安全。  相似文献   

3.
任鹏  田阿利  张伟  黄威 《爆炸与冲击》2016,36(5):617-624
为了研究水下近爆载荷作用下舰艇水下结构的动态变形及失效毁伤模式,利用水下爆炸冲击波等效加载装置结合高速摄影技术,对两种厚度的气背固支5A06铝合金圆板进行了水下冲击波加载实验。得到了气背固支圆板塑性大变形、中心拉伸撕裂和边界剪切破坏3种典型失效模式的动态响应历程。比较分析了冲击波强度、冲击因子、损伤参数和响应参数4种毁伤判据对该类靶板毁伤模式的判别能力。实验结果表明:考虑了结构因素的损伤参数和响应参数能够更为全面的判别结构的失效毁伤情况。  相似文献   

4.
为加深水下近距/接触爆炸加载下圆柱壳结构动态响应行为认识,设计典型圆柱壳结构模型,开展了水下近距/接触爆炸加载下圆柱壳结构动态响应光电联合测试,获得了冲击波、气泡与圆柱壳结构相互作用高速光学物理图像、动态应变、超压载荷、毁伤模式等试验数据。通过高速光学物理图像和三维激光扫描毁伤形态的分析,给出了冲击波、气泡与圆柱壳结构相互作用物理过程及最终毁伤模式;通过动态应变的分析,给出了圆柱壳结构迎爆面和背爆面在加载过程中应变拉伸压缩转变和响应阶段的划分;通过超压载荷的分析,明确了装药爆轰完全性以及接触爆炸加载下结构吸能对超压的影响。研究表明:爆距的变化会显著影响圆柱壳结构的毁伤形态,近距加载下圆柱壳结构主要呈现塑性大变形,接触加载下圆柱壳结构主要呈现撕裂破坏;近距加载下圆柱壳结构迎爆面空化区的形成及溃灭形成的二次加载毁伤效应不容忽视,值得深入研究;研究成果可为水下近距/接触爆炸加载下圆柱壳结构毁伤评估提供参考和依据。  相似文献   

5.
为研究高聚物牺牲包层对钢筋混凝土结构的爆炸毁伤缓解效应,开展了带高聚物牺牲包层钢筋混凝土板的接触爆炸试验,同时设置了普通钢筋混凝土板作为对照组,对比分析了高聚物牺牲包层对钢筋混凝土板毁伤特征的影响。此外,运用AUTODYN软件建立了现场爆炸试验的SPH-FEM耦合模型,通过与试验结果的对比,验证了所建耦合模型的可靠性。在此基础上,通过参数敏感性分析,探究了炸药量和高聚物牺牲包层密度、厚度对带高聚物牺牲包层钢筋混凝土板毁伤特性以及吸能特性的影响。结果表明:接触爆炸下,高聚物牺牲包层能够有效地分散爆炸荷载,缓解爆炸荷载对钢筋混凝土板的冲击作用,具有良好的防护性能;药量在一定范围内增大时,高聚物牺牲包层依然能维持较高的吸能水平,增大包层密度和厚度有利于增强高聚物牺牲包层的吸能特性,包层厚度的变化会造成被保护钢筋混凝土板毁伤模式的改变。  相似文献   

6.
为研究钢筋混凝土梁板组合结构在长持时远爆冲击波荷载作用下的动力响应及毁伤形态,通过实验获得了梁板组合结构的破坏形态和背爆面中心点位移变化。利用有限元软件对钢筋混凝土梁板组合结构的动态响应过程进行数值模拟研究,模拟得到的结构破坏现象与实验吻合较好。在此基础上,分析了梁板组合结构在相同冲量、不同峰值爆炸荷载作用下组合结构的动态响应和破坏过程,并结合挠跨比与破坏形态划分破坏模式。研究结果表明,相同冲量作用下,随着爆炸荷载峰值强度增加,梁板组合构件的破坏程度逐渐增加,破坏模式从弯曲破坏向弯剪联合破坏转换,最后呈现冲切破坏模式;组合构件中板部分发生破坏的时间早于交叉梁部分、破坏程度大于交叉梁。  相似文献   

7.
任凯  周洪景  杨晨 《爆炸与冲击》2023,43(4):90-101
船体水下近距非接触爆炸产生的破口计算过程复杂,涉及船体板架、武器装药和爆距方位等诸多因素,工程实践中通常应用经验公式求解。基于舰船遭受定向型战斗部攻击、毁伤面近似垂直于毁伤轴和爆炸过程瞬时发生满足近似能量守恒基本条件,根据爆炸冲击波初始动能与爆炸作用区域结构塑性变形能等量传递的假设,给出了计算方法。考虑了附着加强筋的船体壳板等效厚度对抵御冲击波毁伤的影响,运用爆炸冲击波作用下船体壳板产生的极限应变超过板材动态极限应变导致壳板开裂这一基本原理,设计了两步迭代法计算流程,给出了简捷易用的迭代计算表格。针对4种典型装药当量冲击波作用下,5~20 m长度舱段,11 m以内爆炸距离,6和8 mm这2种典型厚度船体壳板遭受爆炸冲击受损情况进行了768组数据计算。引入平面拟合方程,通过判断截平面相似度分析,给出了计算方法的适用性判据,探讨了计算参数的适用范围,以保证两步迭代法能够客观反映水下近距非接触爆炸的实际破坏效果。结合经验公式计算结果和破损舰船受损实测数据,对该方法进行了检验,实践表明:两步迭代法易于工程实践且具有较好的准确性。  相似文献   

8.
李勇  肖伟  程远胜  刘均  张攀 《爆炸与冲击》2018,38(2):279-288
通过有限元软件LS-DYNA模拟了波纹杂交夹层板在冲击波与破片联合作用下的响应过程,研究了炸药当量、载荷类型和填充方式对波纹杂交夹层板变形与失效模式的影响,并与实体板、间隔板和波纹夹层板的抗联合毁伤性能进行了对比,讨论了波纹杂交夹层板的能量吸收特性。数值计算结果表明:与冲击波单独作用相比,破片群单独作用和冲击波与破片联合作用对结构造成的毁伤更为严重;当药量较小时,波纹夹层板和波纹杂交夹层板的抗联合毁伤性能优于实体板与间隔板,波纹杂交夹层板的抗联合毁伤性能从全填充、迎爆面填充到背爆面填充逐渐降低;当药量较大时,所有结构均产生破口失效;在能量耗散方面,冲击波单独作用时以波纹芯层吸能为主,破片群单独作用和冲击波与破片联合作用时以上面板吸能为主。  相似文献   

9.
舱内爆炸载荷及舱室板架结构的失效模式分析   总被引:15,自引:0,他引:15  
通过对典型半穿甲导弹打靶实验中舰艇结构破坏模式的观察,结合数值模拟,分析了舱内爆炸载荷的特征以及舱内爆炸下舱室板架结构的失效模式。结果表明,舱内爆炸下,舱室板架结构承受的冲击载荷及失效模式与敞开环境爆炸下加筋板结构承受的冲击载荷及失效模式有较大区别,其动态响应难以用敞开环境爆炸下加筋板结构的动态响应描述;舱内爆炸载荷主要有壁面反射冲击波、角隅汇聚冲击波以及准静态气体压力,其中两壁面和三壁面角隅汇聚冲击波的强度分别为相同部位壁面反射冲击波强度的5倍和12倍以上;舱室板架结构主要有4种失效模式,其中模式Ⅲ、Ⅳ较常发生;舱室板架结构加强筋布置在迎爆面将使板架中部的局部破坏程度增加,但有利于削弱角隅汇聚冲击波强度,减小板架沿角隅部位的撕裂破坏。  相似文献   

10.
邢永明  佟铮  王呼和 《实验力学》2010,25(3):299-304
利用大型有限元软件ANSYS/LS-DYNA建立了成组药包水下爆炸冰盖动态响应模型,通过数值计算,得到了冲击波峰值压力变化规律,峰值压力与理论计算结果基本吻合。本文分析了冰盖在成组药包水下爆炸冲击载荷下的应力分布及垂直位移响应特征。结果表明,冰盖迎爆面为压缩破坏,背爆面为拉伸破坏,两者数值均十分接近,其中迎爆面最大压力值可达18.12MPa,冰盖近爆炸点最大垂直位移为1.211cm,两药包连线中点最小位移为0.15cm,达到脆性冰盖形成贯通裂隙的基本条件,从而确定了冰盖在水下成组药包大间距布设条件下,其动态破坏形式是以产生裂隙为主要特征。  相似文献   

11.
为研究聚异氰氨酸酯噁唑烷聚合物高分子材料(polyisocyanate oxazodone,POZD)涂层方形钢筋混凝土板在接触爆炸作用下的破坏模式和抗爆性能,对POZD涂层方形钢筋混凝土板进行接触爆炸条件下试验研究。试验中采用建筑结构中楼面设计常用的钢筋混凝土板为研究对象,通过11次独立的爆炸试验,分析了不同POZD涂层厚度对抗爆性能的影响,观测了钢筋混凝土板在不同装药量和不同POZD涂层厚度条件下的破坏模式和破坏特征,研究结果表明:涂层POZD钢筋混凝土板的主要破坏模式为钢筋混凝土板正面爆炸成坑,背面POZD涂层的圆锥状鼓起。POZD涂层鼓起主要是在爆炸冲击波作用下POZD涂层从基体板脱离并出现较大塑性变形所致。当冲击波荷载强度超过POZD材料的极限抗拉强度时,在涂层锥尖处形成较小的圆孔装剪切破坏,涂层的其他区域保持完好,从而让钢筋混凝土板不会产生较大范围的震塌破坏。在强冲击波荷载作用下利用POZD涂层仍然能够保持大变形、高塑性特性,可以通过自身的大变形很好地延长爆炸荷载的作用时间和耗散时间,吸收较大冲击波能量,从而约束混凝土震塌碎片,提高钢混混凝土板的抗爆性能。随着POZD涂层厚度增加,板的抗接触爆炸作用下的抗爆能力越强,临界震塌破坏装药量越多。研究结果可为工程应用及毁伤评估提供参考。  相似文献   

12.
为研究多孔吸能材料泡沫铝板对工程结构的抗爆防护作用,开展室外爆炸破坏实验,分别对设置不同泡沫铝防护层的钢筋混凝土(reinforced concrete,RC)板在爆炸荷载下的动态响应及破坏模式进行了研究,并运用LS-DYNA软件建立了有限元模型。通过与实验对照,验证了模型的可行性,对比分析了有、无泡沫铝防护层钢筋混凝土板的损伤破坏规律,并讨论了泡沫铝密度梯度分布和纵筋配筋率的影响。结果表明:有限元模型能够有效分析含泡沫铝防护层RC板的动态响应及其破坏形态;泡沫铝防护层能够有效减小钢筋混凝土板的挠度变形,降低试件的破坏程度;泡沫铝密度由下到上递增情况对RC板的减爆效果最好;增大配筋率可以提升泡沫铝防护RC板整体抗爆性能。  相似文献   

13.
为了探讨钢筋混凝土板在爆炸载荷作用下的抗爆性能,对方形钢筋混凝土板在单向支撑条件下进行了近场爆炸加载实验,实验中采取TNT装药对钢筋混凝土板进行加载.并利用AUTODYN软件采用流固耦合算法,建立了混凝土和钢筋三维分离式实体模型,对钢筋混凝土板的动态响应过程进行数值模拟,且考虑应变率对钢筋和混凝土材料的动态本构特性的影...  相似文献   

14.
GFRP加固RC双向板抗爆性能试验研究   总被引:3,自引:0,他引:3  
为探讨化爆条件下玻璃纤维对钢筋混凝土结构的加固效果,对粘贴玻璃纤维条带钢筋混凝土复合板以及普通钢筋混凝土板同时进行了抗爆性能试验,并将两者的结果进行了对比分析。结果表明,玻璃纤维能够有效阻止混凝土裂缝的发展,提高钢筋混凝土板的抗爆能力,研究结果可为玻璃纤维加固机理研究及复合结构的抗爆设计提供依据和参考。  相似文献   

15.
为了满足高侵深和大穿孔的要求,设计一种聚能杆式弹丸(jetting projectile charge, JPC),开展大尺寸钢筋混凝土墙的毁伤效应试验。在此基础上,基于修正参数的K&C(Karagozian&Case)模型进行数值模拟,研究JPC高速侵彻和爆炸冲击波对钢筋混凝土墙的联合破坏作用,分析墙体厚度对破坏效果的影响规律。结果表明,在1.67倍和2.50倍装药直径的炸高条件下,JPC均能够有效贯穿80 cm(6.67倍装药直径)厚的钢筋混凝土墙,形成直径大于6 cm(0.50倍装药直径)的柱状孔洞;聚能装药的多载荷毁伤特性决定了钢筋混凝土墙的破坏结果,爆炸冲击波能够加剧墙体正面开坑和背面崩落的破坏范围;墙体厚度对于墙体正面漏斗坑的直径与深度及内部侵彻孔洞直径均无显著影响;随着墙体厚度增大,背面漏斗坑直径逐渐减小,深度却逐渐增大。  相似文献   

16.
为得到接触爆炸下钢筋混凝土(reinforced concrete,RC)梁的局部破坏模式和毁伤效应,对同一尺寸的RC梁进行了不同装药量的接触爆炸试验研究。试验中采用框架结构中典型工程尺度RC原型梁为研究对象,通过4次爆炸试验,观测了RC梁在不同装药量下的局部破坏模式和破坏特征,分析了装药量对局部毁伤效应的影响。研究结果表明:接触爆炸荷载作用下,RC梁将发生正面成坑、侧面崩落、背面震塌和截面冲切等局部破坏模式,爆坑深度、震塌厚度、表面毁伤面积以及受压区纵筋变形均与装药量立方根近似呈线性增加关系。在试验数据基础上,将RC梁局部毁伤程度划分为轻度毁伤、中度毁伤、重度毁伤和严重毁伤4个等级,采用比例装药量判据进行评估。研究成果可为抗爆结构设计和结构毁伤评估提供理论依据。  相似文献   

17.
为了掌握聚脲喷涂加固砖填充墙的抗爆特性,基于一种改进的大型爆炸试验装置,开展了聚脲加固框架砖填充墙的原型爆炸试验,分析了爆炸荷载作用下加固砖墙的动力响应特征和破坏过程及模式,揭示了其失效破坏机理。研究结果表明,聚脲加固可大幅提升填充墙构件的抗爆性能,显著增加填充墙构件的变形延性;加固砖墙受爆炸荷载作用发生振动的过程其体系刚度不断变化,最高相差133%;随着比例距离降低,加固砖墙的破坏模式逐渐由弯曲破坏转为剪切破坏,聚脲厚度超过6 mm可以有效限制局部剪切破坏现象;基于砖墙和聚脲涂层的抗力函数建立的理论计算模型,可以较为准确地预测爆炸作用下背爆面加固双向砖墙的正向位移响应过程。  相似文献   

18.
在TNT集团装药爆炸作用下 ,进行了四边简支钢筋混凝土板柱节点冲切破坏的试验研究 ,在土中自由场波传播理论的基础上 ,用介质结构相互作用理论和双剪强度理论对板柱节点冲切破坏机构进行了分析 ,分析结果与试验数据符合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号