首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A quantitative technique is described for a sample preparation followed by high performance liquid chromatography method for the simultaneous determination of sulfamonomethoxine and its metabolites, N 4-acetyl SMM and 2,6-dihydroxy SMM, in chicken plasma. The average recoveries, analytical total time, and limits of quantitation were ≥80% (relative standard deviations (SD) ≤6%), <30 min sample-1 (12 samples in 2 h), and ≤0.09 μg ml−1, respectively. The procedure, performed under 100% aqueous conditions, uses no organic solvents and toxic reagents at all and is, therefore, harmless to the environment and humans.   相似文献   

2.
Cholesterol oxidase (ChOx), cholesterol esterase (ChEt), and horseradish peroxidase (HRP) have been co-immobilized covalently on a self-assembled monolayer (SAM) of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTS) deposited on an indium–tin–oxide (ITO) glass surface. These enzyme-modified (ChOx-ChEt-HRP/AEAPTS/ITO) biosensing electrodes have been used to estimate cholesteryl oleate from 10 to 500 mg dL−1. The sensitivity, K m value, and shelf-life of these ChEt-ChOx-HRP/AEAPTS/ITO biosensing electrodes have been found to be 124 nA mg−1 dL, 95.098 mg dL−1 (1.46 mmol L−1), and ten weeks, respectively. The ChEt-ChOx-HRP/AEAPTS/ITO bio-electrodes have been used to estimate total cholesterol in serum samples. Figure Covalent immobilization of enzymes onto AEAPTS/ITO surface using EDC/NHS chemistry Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
A method is described for determination of residues of the insecticide Etofenprox in environmental samples. Anionic surfactant micelle-mediated extraction (coacervation extraction) was evaluated for isolation of Etofenprox before HPLC. The optimum conditions used for extraction included: 0.09 g sodium dodecanesulfonate (SDoS), 3.1 mL (3.3, for concentrations below 0.04 mg L−1) 12 mol L−1 HCl, 5 min vortex stirring, 5 min centrifugation at 4000 rpm, 2 h equilibration time. The limits of quantification (LOQ) and detection (LOD) were 0.01 and 0.004 mg L−1, respectively, and recoveries obtained from five real samples ranged from 94.33±2.48 to 100.13±2.71%. The precision of the method was good; relative standard deviations (RSD) were less than 7%.   相似文献   

4.
Highly sensitive flow-injection chemiluminescence (CL) combined with molecularly imprinted solid-phase extraction (MISPE) has been used for determination of 2,4-dichlorophenol (2,4-DCP) in water samples. The molecularly imprinted polymer (MIP) for 2,4-DCP was prepared by non-covalent molecular imprinting methods, using 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EGDMA) as the monomer and cross-linker, respectively. 2,4-DCP could be selectively adsorbed by the MIP and the adsorbed 2,4-DCP was determined by its enhancing effect on the weak chemiluminescence reaction between potassium permanganate and luminol. The enhanced CL intensity was linear in the range from 1 × 10−7 to 2 × 10−5g mL−1. The LOD (S/N = 3) was 1.8 × 10−8g mL−1, and the relative standard deviation (RSD) was 3.0% (n = 11) for 1.4 × 10−6g mL−1. The proposed method had been successfully applied to the determination of 2,4-DCP in river water. Figure Effect of 4-VP content on the ultraviolet spectrum of 2,4-DCP in chloroform  相似文献   

5.
The solubility of 1,4-naphthoquinone, plumbagin, lawsone, and juglone in supercritical carbon dioxide was determined spectroscopically at 40°C, and in the pressure range 8–18 MPa. Their solubilities at 12 MPa were between 0.3 and 10 g L−1. Plumbagin from Plumbago scandens L. roots was extracted at 40°C and 20 MPa. The extracted plumbagin mass fraction was up to 0.2% in fresh roots but down to about 0.006% in aged roots. n-Hexane and chloroform extraction of such aged roots indicates that the older and dryer the roots are, the stronger they bind plumbagin. Reversed-phase HPLC indicated a relatively pure plumbagin extract with supercritical carbon dioxide.   相似文献   

6.
A new kind of magnetic dextran microsphere (MDMS) with uniform shape and narrow diameter distribution has been prepared from magnetic iron nanoparticles and dextran. Horseradish peroxidase (HRP) was successfully immobilized on the surface of an MDMS-modified glassy-carbon electrode (GCE), and the immobilized HRP displayed excellent electrocatalytic activity in the reduction of H2O2 in the presence of the mediator hydroquinone (HQ). The effects of experimental variables such as the concentration of HQ, solution pH, and the working potential were investigated for optimum analytical performance. This biosensor had a fast response to H2O2 of less than 10 s and an excellent linear relationship was obtained in the concentration range 0.20 μmol L−1–0.68 mmol L−1, with a detection limit of 0.078 μmol L−1 (S/N = 3) under the optimum conditions. The response showed Michaelis–Menten behavior at larger H2O2 concentrations, and the apparent Michaelis–Menten constant was estimated to be 1.38 mmol L−1. Moreover, the selectivity, stability, and reproducibility of the biosensor were evaluated, with satisfactory results. Figure Amperometric response of the biosensor to successive additions of H2O2 and the plot of amperometric response vs. H2O2 concentration  相似文献   

7.
This paper describes methods for the determination of low-molecular-weight (LMW) dicarboxylic acids in atmospheric aerosols as important chemical tracers for source apportionment of aerosol organics and for studying atmospheric processes leading to secondary organic aerosol formation. The two derivatization procedures most widely used in GC analysis of dicarboxylic acids were compared: esterification using BF3/alcohol reagent and silylation using N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA). The advantages and drawbacks of the two methods are investigated and compared in terms of (1) precision and accuracy of the results and (2) sensitivity and detection limit of the procedure. The comparative investigation was performed on standard solutions containing target C3–C9 dicarboxylic acids and on experimental particulate matter (PM) samples. Attention was focused on low-volume sampling devices that collect small amounts of sample for organic speciation. The results show that, overall, both the techniques appear suitable for the analysis of LMW dicarboxylic acids in atmospheric aerosols since they provide low detection limits (≤4 ng m−3) and satisfactory reproducibility (RSD% ≤ 15%). Between them, BSTFA should be the reagent of choice under the most limiting conditions of PM filters collected by low-volume air samplers: It provides determination of all the target C3–C9 dicarboxylic acids with lower detection limits (≤2 ng m−3) and higher reproducibility (RSD% ≤ 10%)   相似文献   

8.
Boron carbide is widely used as industrial material, because of its extreme hardness, and as a neutron absorber. As part of a round-robin exercise leading to certification of a new reference material (ERM-ED102) which was demanded by the industry we analysed nitrogen in boron carbide by inert gas fusion analysis (GFA) and instrumental photon activation analysis (IPAA) using the 14N(γ,n)13N nuclear reaction. The latter approach is the only non-destructive method among all the methods applied. By using photons with energy below the threshold of the 12C(γ,n)11C reaction, we hindered activation of matrix and other impurities. A recently installed beam with a very low lateral activating flux gradient enabled us to homogeneously activate sample masses of approximately 1 g. Taking extra precautions, i.e. self-absorption correction and deconvolution of the complex decay curves, we calculated a nitrogen concentration of 2260 ± 100 μg g−1, which is in good agreement with our GFA value of 2303 ± 64 μg g−1. The values are the second and third highest of a rather atypical (non-S-shape) distribution of data of 14 round-robin participants. It is of utmost importance for the certification process that our IPAA value is the only one not produced by inert gas fusion analysis and, therefore, the only one which is not affected by a possible incomplete release of nitrogen from high-melting boron carbide. Figure Twin-Detector system for analyzing spatially extended samples  相似文献   

9.
An ideal toxicity assay should utilize multiple indexes obtained from transient changes of metabolic activities. Here, we demonstrate the possibility for a novel toxicity bioassay using the damped glycolytic oscillation phenomenon occurring in starved yeast cells. In a previous study, the phenomenon was characterized in detail. Under optimum conditions to induce the phenomenon, the wave shapes of the damped glycolytic oscillations were changed by the instantaneous addition of both glucose and chemicals and by changing the chemical concentration. We estimated the changes in the oscillation wave shapes as six indexes, i.e., the number of wave cycles, maximum amplitude, oscillation frequency, attenuation coefficient, initial peak height, and non-steady-state time. These index changes were obtained from several kinds of chemicals. The chemicals, especially those for acids (0.01–100 mM HCl and 0.01–50 mM citric acid), bases (0.001–50 mM KOH), heavy metal ions (1–1,000 mg L−1; Cu2+, Pb2+, Cd2+, Hg2+), respiratory inhibitors (3–500 mg L−1 NaN3), dissolved oxygen removers (10–300 mg L−1 NaSO3), surfactants (10–200 mg L−1 benzalkonium chloride), and aldehyde (10–1,000 mg L−1 acetaldehyde), showed characteristic patterns depending on each chemical and its concentration. These significant results demonstrate the possibilities of new methods for both toxicity qualification and quantification. Figure Influences of surfactant on the oscillation wave shape Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Two novel N-(2-mercapto-1,3,4-thiadiazol-5-yl)-N′-(4-substituted-arylacetyl) urea compounds have been synthesized, characterized by NMR and MS, and used as self-assembly reagents to form self-assembled monolayers (SAMs) on Pt electrodes. The modified electrodes were characterized by electrochemical methods. The electrochemical behavior of p-benzenediol at the SAMs electrodes was investigated. It was found that the electrochemical response to p-benzenediol is controlled by diffusion and can be electrocatalyzed to obtain more symmetrical redox peaks and higher voltammetric current response at the SAMs electrodes, with a peak separation of 80 mV. For p-benzenediol the process at the SAMs electrodes is quasi-reversible with a rate constant of 0.6742 s−1. The SAMs electrodes have been used to determine p-benzenediol by differential pulse voltammetry. The peak current was linear for concentrations of p-benzenediol in the range 1×10−7−5×10−4 mol L−1 and the detection limit was 4.0×10−8 mol L−1. The SAMs electrodes were used to determine p-benzenediol in real photographic developer and in a synthetic waste water sample; the standard addition recovery was in the range 96.6–100.4%.   相似文献   

11.
Competitive adsorption on adsorptive solid-phase microextraction (SPME) fibres implies careful determination of operating conditions for reliable quantitative analysis of VOCs in indoor air. With this objective, two analytical approaches, involving non-equilibrium and equilibrium extraction, were compared. The average detection limit obtained for GC-MS analysis of nine VOCs by the equilibrium method is 0.2 μg m−3, compared with 1.9 μg m−3 with the non-equilibrium method. The effect of the relative humidity of the air on the calibration plots was studied, and shown to affect acetone adsorption only. Hence, the concentrations that can be accurately determined are up to 9 μmol m−3. The methods were then applied to indoor air containing different concentrations of VOCs. The non-equilibrium method, involving short extraction time, can be used for detection of pollution peaks whereas equilibrium extraction is preferable for measurement of sub-μg m−3 ground concentration levels.   相似文献   

12.
Water-soluble cadmium sulfide (CdS) quantum dots (QDs) capped by mercaptoacetic acid were synthesized by aqueous-phase arrested precipitation, and characterized by transmission electron microscopy, spectrofluorometry, and UV-Vis spectrophotometry. The prepared luminescent water-soluble CdS QDs were evaluated as fluorescence probes for the detection of highly reactive hydrogen selenide ions (HSe ions). The quenching of the fluorescence emission of CdS QDs with the addition of HSe ions is due to the elimination of the S2− vacancies which are luminescence centers. Quantitative analysis based on chemical interaction between HSe ions and the surface of CdS QDs is very simple, easy to develop, and has demonstrated very high sensitivity and selectivity features. The effect of foreign ions (common anions and biologically relevant cations) on the fluorescence of the CdS QDs was examined to evaluate the selectivity. Only Cu2+ and S2− ions exhibit significant effects on the fluorescence of CdS QDs. With the developed method, we are able to determine the concentration of HSe ions in the range from 0.10 to 4.80 μmol L−1, and the limit of detection is 0.087 μmol L−1. The proposed method was successfully applied to monitor the obtained HSe ions from the reaction of glutathione with selenite. To the best of our knowledge, this is the first report on fluorescence analysis of HSe ions in aqueous solution. Figure CdS quantum dots as fluorescence probes for the sensitive and selective detection of highly reactive HSe- ions in aqueous solution  相似文献   

13.
Enzymatically cleaved glycans from sub-milligram quantities of erythropoietin (EPO) and ovalbumin have been analyzed, without further purification, by two-dimensional diffusion-ordered nuclear magnetic resonance spectroscopy. At NMR sample concentrations below 50 μmol L−1 the major components of the oligosaccharide fractions could be distinguished by their anomeric proton chemical shift and their size-dependent diffusion coefficients. Figure 1H NMR diffusion decay curves of anomeric protons in the EPO glycan fraction  相似文献   

14.
A new post-chemiluminescence (PCL) phenomenon was observed when phenothiazine medications were injected into the reaction mixture after the chemiluminescence (CL) reaction of luminol and potassium ferricyanide had finished. A possible reaction mechanism was proposed based on studies of the kinetic characteristics of the CL, CL spectra, fluorescence spectra, and on other experiments. The feasibility of determining various phenothiazine medications by utilizing these PCL reactions was examined. A molecular imprinting–post-chemiluminescence (MI-PCL) method was established for the determination of chlorpromazine hydrochloride using a chlorpromazine hydrochloride-imprinted polymer (MIP) as the recognition material. The method displayed high selectivity and high sensitivity. The linear range of the method was 1.0×10−8∼1.0×10−6, with a linear correlation coefficient of 0.9985. The detection limit was 3×10−9 g/ml chlorpromazine hydrochloride, and the relative standard deviation for a 1.0×10−7 g/ml chlorpromazine hydrochloride solution was 4.0% (n=11). The method has been applied to the determination of chlorpromazine hydrochloride in urine and animal drinking water with satisfactory results.   相似文献   

15.
A new spectrofluorimetric method was developed for the determination of trace amounts of lecithin using the ciprofloxacin (CIP)–terbium (Tb3+) ion complex as a fluorescent probe. In a buffer solution at pH=5.60, lecithin can remarkably reduce the fluorescence intensity of the CIP–Tb3+ complex at λ=545 nm. The reduced fluorescence intensity of the Tb3+ ion is proportional to the concentration of lecithin. Optimum conditions for the determination of lecithin were also investigated. The linear range and detection limit for the determination of lecithin were 1.0×10−6–3.0×10−5 mol L−1 and 3.44×10−7 mol L−1, respectively. This method is simple, practical, and relatively free of interference from coexisting substances. Furthermore, it has been successfully applied to assess lecithin in serum samples.   相似文献   

16.
A novel electrochemical sensor for methyl parathion based on silicate– cetyltrimethylammonium bromide nanocomposite film has been fabricated by electro-assisted deposition onto glassy carbon electrode in one-step via an electrochemical modulation of pH at the electrode/solution interface to promote controlled gelification of tetraethylorthosilicate sol, and was characterized with scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The electrochemical sensing of methyl parathion on the film-modified electrode was investigated applying cyclic voltammetry and square wave voltammetry. Compared to the unmodified electrode, the shapes of the redox peaks were improved and the peak currents significantly increased. Experimental parameters such as deposition time, pH value, and accumulation conditions have been optimized. A linear relationship between the peak current and methyl parathion concentration was obtained in the range from 1.0 × 10−7 to 1.0 × 10−4 mol L−1 with a detection limit of 1.04 × 10 −8 mol L−1 (S/N = 3) after accumulation at 0 V for 120 s. The film electrode shows great promise for determination of methyl parathion in real samples.   相似文献   

17.
Abstract  The present investigation deals with the synthesis of a N-methylated cyclotetrapeptide, hirsutide (2), by coupling of the dipeptide units Boc-l-phenylalanyl-l-N-methylphenylalanine-OH and l-valyl-l-N-methylphenylalanine-OMe followed by cyclization of the linear tetrapeptide fragment. The chemical structure was established on the basis of analytical as well as spectroscopic data. The newly synthesized cyclic peptide was subjected to pharmacological screening and found to be highly potent against the gram-negative bacteria Pseudomonas aeruginosa and Klebsiella pneumoniae at 6 μg cm−3. In addition, potent antihelmintic activity against the earthworms Megascoplex konkanensis and Pontoscotex corethruses at 1 and 2 mg cm−3, and potent cytotoxic activity against Dalton’s lymphoma ascites and Ehrlich’s ascites carcinoma cell lines with IC50 values of 14 and 22 μM were also observed. Studies revealed that the pentafluorophenyl ester method employing a catalytic amount of N-methylmorpholine proved to be better for cyclization of the linear tetrapeptide unit. Graphical abstract     相似文献   

18.
An analytical procedure has been introduced to enable study of the time profile of eprinomectin excretion in sheep faeces. Eprinomectin was extracted from sheep faeces with acetonitrile, the extract was cleaned by solid-phase extraction (SPE), and, after derivatization by reaction with N-methylimidazole, trifluoroacetic anhydride, and acetic acid, eprinomectin was analysed by high-performance liquid chromatography (HPLC) with fluorescence detection. The method has a low detection limit (1.0 ng g−1 of moist sheep faeces), a low quantification limit (2.5 ng g−1 of moist sheep faeces), good recovery (in the range 78.8 to 87.1%), and good reproducibility (RSD<10%). The method was used to study the time-profile of excretion of eprinomectin in sheep faeces after a single topical administration of 0.5 mg kg−1 b.w. of the drug. Because of its good recovery, precision, and sensitivity, the method has also proved applicable to further ecotoxicological studies of eprinomectin. Figure Autochthonous Slovenian dairy breed sheep – Istrian Pramenka  相似文献   

19.
The present work describes, for the first time, in situ electrochemical preparation of dendrimer-encapsulated Cu nanoparticles using a self-assembled monolayer of fourth-generation amine-terminated polyamidoamine (PAMAM) dendrimer as the template. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) studies of the modified surface confirmed the presence of Cu nanoparticles entrapped in dendrimer film. Au electrode modified with a monolayer of the dendrimer enables preconcentration and subsequent voltammetric detection of Cu2+ at picomolar concentrations. Further, Cu nanoparticles in the dendrimer monolayer could be electrochemically derivatised to Cu hexacyanoferrate, which exhibits specific crystal planes, unlike the random distribution of crystal planes in bulk-formed Cu hexacyanoferrate, which is another catalytically active material for sensor applications. Figure Electrochemical preparation of copper–dendrimer nanocomposite  相似文献   

20.
A fast and sensitive approach that can be used to detect norfloxacin in human urine using capillary electrophoresis with end-column electrochemiluminescence (ECL) detection of is described. The separation column was a 75-μm i.d. capillary. The running buffer was 15 mmol L−1 sodium phosphate (pH 8.2). The solution in the detection cell was 50 mmol L−1 sodium phosphate (pH 8.0) and 5 mmol L−1 The ECL intensity varied linearly with norfloxacin concentration from 0.05 to 10 μmol L−1. The detection limit (S/N=3) was 0.0048 μmol L−1, and the relative standard deviations of the ECL intensity and the migration time for eleven consecutive injections of 1.0 μmol L−1 norfloxacin (n=11) were 2.6% and 0.8%, respectively. The method was successfully applied to the determination of norfloxacin spiked in human urine without sample pretreatment. The recoveries were 92.7–97.9%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号