首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have established that the major pathway for the first singlet excited state of 1-nitronaphthalene is intersystem crossing to the triplet manifold. In this contribution we present determinations of the decay of the S1 state of this compound in several solvents to establish the time scale of the multiplicity change as a function of the polarity and hydrogen-bonding ability of the solvent environment. The measurements were made with the femtosecond frequency up-conversion technique to follow the weak spontaneous molecular emission which precedes triplet formation. Our results show that in all environments the S1 lifetime is 100 fs or less, making 1-nitronaphthalene the organic compound with the fastest multiplicity change ever measured. We also show that the bathochromic shifts observed for the first absorption band imply changes in the relative energies of the singlet and triplet manifolds, which in turn manifest in a 2-fold increase of the fluorescence lifetime in cyclohexane compared with the polar solvents. Additionally, we performed excited-state calculations at the TD-DFT/ PBE0/6-311++G(d,p) level of theory with the PCM model for solvation. The TD-DFT theory identifies the presence of upper triplet states which can act as receiver states in this highly efficient photophysical pathway. Together, the experimental and theoretical results show that the dynamics of the S1 state in 1-nitronaphthalene represent an extreme manifestation of El-Sayed's rules due to a partial (n-pi*) character in the receiver triplets which are nearly isoenergetic with S1, determining a change in the molecular spin state within 100 fs.  相似文献   

2.
3.
Femtosecond broadband transient absorption experiments of 1-nitropyrene, a nitro-polycyclic aromatic hydrocarbon of environmental concern are presented in cyclohexane and hexane solutions. The transient absorption spectra show the presence of three species that are assigned to the Franck-Condon excited lowest singlet (S1) state, the structurally relaxed S1 state, and the lowest excited triplet state. The spectral changes at early times are interpreted in terms of conformational dynamics; primarily due to an ultrafast rotation of the nitro group in the S1 state. This excited state relaxation is followed by intersystem crossing with a time constant of 7 ps. CIS/6-31G(d,p) calculations predict planarization of the nitro-aromatic torsional angle as the major nuclear relaxation coordinate, from 32.8 degrees at the HF/6-31G(d,p) level of theory in the ground state (27.46 degrees at B3LYP/6-31++G(d,p)) to 0.07 degrees in the S1 state. Vertical excitation energies at the TDDFT/6-31++G(d,p) and TDDFT/IEFPCM/6-31++G(d,p) levels of theory predict a small energy gap (<0.12 eV) between the S1(pipi*) state and the third excited triplet state T3(npi*) in the gas phase and in cyclohexane, respectively. The small energy gap suggests a large spin-orbit coupling between the S1(pipi*) and T3(npi*) states, which explains the ultrafast intersystem crossing of 1-nitropyrene in nonpolar solvents.  相似文献   

4.
The photophysics of the 1-nitronaphthalene molecular system, after the absorption transition to the first singlet excited state, is theoretically studied for investigating the ultrafast multiplicity change to the triplet manifold. The consecutive transient absorption spectra experimentally observed in this molecular system are also studied. To identify the electronic states involved in the nonradiative decay, the minimum energy path of the first singlet excited state is obtained using the complete active space self-consistent field∕∕configurational second-order perturbation approach. A near degeneracy region was found between the first singlet and the second triplet excited states with large spin-orbit coupling between them. The intersystem crossing rate was also evaluated. To support the proposed deactivation model the transient absorption spectra observed in the experiments were also considered. For this, computer simulations using sequential quantum mechanic-molecular mechanic methodology was used to consider the solvent effect in the ground and excited states for proper comparison with the experimental results. The absorption transitions from the second triplet excited state in the relaxed geometry permit to describe the transient absorption band experimentally observed around 200 fs after the absorption transition. This indicates that the T(2) electronic state is populated through the intersystem crossing presented here. The two transient absorption bands experimentally observed between 2 and 45 ps after the absorption transition are described here as the T(1)→T(3) and T(1)→T(5) transitions, supporting that the intermediate triplet state (T(2)) decays by internal conversion to T(1).  相似文献   

5.
Phenalenone (PN) is a very efficient singlet oxygen sensitiser in a wide range of solvents. This work uses ab initio quantum chemical calculations (CASSCF/CASPT2 protocol) to study the mechanism for populating the triplet state of PN responsible for this reaction, the (3)(π-π*) state. To describe in detail this reaction path, the singlet and triplet low-lying excited states of PN have been studied, the critical points of the potential energy surfaces corresponding to these states located and the vertical and adiabatic energies calculated. Our results show that, after the initial population of the S(2) excited state of (π-π*) character, the system undergoes an internal conversion to the (1)(n-π*) state. After populating the dark S(1) state, the system relaxes to the (1)(n-π*) minimum, but rapidly populates the triplet manifold through a very efficient intersystem crossing to the (3)(π-π*) state. Although the population of the minimum of this triplet state is strongly favoured, a conical intersection with the (3)(n-π*) surface opens an internal conversion channel to this state, a path accessible only at high temperatures. Radiationless deactivation processes are ruled out on the basis of the high-energy barriers found for the crossings between the excited states and the ground state. Our computational results satisfactorily explain the experimental findings and are in very good agreement with the experimental data available. In the case of the frequency of fluorescence, this is the first time that these data have been theoretically predicted in good agreement with the experimental results.  相似文献   

6.
Singlet and triplet low-lying states of the 4-dimethylaminobenzonitrile and its derivatives have been studied by the density functional theory and ab initio methodologies. Calculations reveal that the existence of the methyl groups in the phenyl ring and the amino twisting significantly modify properties of their excited states. A twisted singlet intramolecular charge-transfer state can be accessed through decay of the second planar singlet excited state with charge-transfer character along the amino twisting coordinate or by an intramolecular charge-transfer reaction involved with a locally first excited singlet state. Plausible charge-transfer triplet states and intersystem crossing processes among singlet and triplet states have been explored by spin-orbit coupling calculations. The intersystem crossing process was predicted to be the dominant deactivation channel of the photoexcited 4-dimethylaminobenzonitrile.  相似文献   

7.
利用飞秒分辨的激光泵浦-探测技术结合飞行时间质谱和光电子速度成像方法研究了邻二氯苯第一电子单重激发态(S1)的超快动力学.邻二氯苯的S1态振动基态寿命为(651 ± 10) ps,对应于S1振动基态向三重态的系间窜越过程.邻二氯苯S1的高振动激发9a218a2对应两个衰减通道,其中寿命为(458 ± 12) fs的超快过程对应于由处于振动激发的S1向高振动激发的基态(S0)发生的内转换过程,而寿命为(90 ± 10) ps过程则对应由S1态向三重态(T1)的系间窜越过程,电离产生的光电子能谱中长寿命的谱峰可能与系间窜越过程有关. S1态高振动态的旋轨耦合程度比低振动态的更强,导致系间窜越过程更快.  相似文献   

8.
The dynamics of the excited states of 1-(p-nitrophenyl)-2-(hydroxymethyl)pyrrolidine (p-NPP) has been investigated using the subpicosecond transient absorption spectroscopic technique in different kinds of solvents. Following photoexcitation using 400 nm light, conformational relaxation via twisting of the nitro group, internal conversion (IC) and the intersystem crossing (ISC) processes have been established to be the three major relaxation pathways responsible for the ultrafast deactivation of the excited singlet (S(1)) state. Although the nitro-twisting process has been observed in all kinds of solvents, the relative probability of the occurrence of the other two processes has been found to be extremely sensitive to solvent polarity, because of alteration of the relative energies of the S(1) and the triplet (T(n)) states. In the solvents of lower polarity, the ISC is predominant over the IC process, because of near isoenergeticity of the S(1)(ππ*) and T(3)(nπ*) states. On the other hand, in the solvents of very large polarity, the energy of the S(1)(ππ*) state becomes lower than those of both the T(3)(nπ*) and T(2)(nπ*/ππ*) states, but those of the T(1)(ππ*) state and the IC process to the ground electronic (S(0)) state are predominant over the ISC, and hence the triplet yield is nearly negligible. However, in the solvents of medium polarity, the S(1) and T(2) states become isoenergetic and the deactivation of the S(1) state is directed to both the IC and ISC channels. In the solvents of low and medium polarity, following the ISC process, the excited states undergo IC, vibrational relaxation, and solvation in the triplet manifold. On the other hand, following the IC process in the Franck-Condon region of the S(0) state, the vibrationally hot molecules with the twisted nitro group subsequently undergo the reverse nitro-twisting process via dissipation of the excess vibrational energy to the solvent or vibrational cooling.  相似文献   

9.
High resolution S0 --> Sn and T1 --> Tn electronic absorptions and B-type delayed fluorescence of 1,2,7,8-dibenzanthracene in polymethylmethacrylate (PMMA) were experimentally observed by flash and laser flash photolysis technique. Dibenzanthracene molecules were excited in a two-step process. In the first step, an excited singlet is created, which undergoes intersystem crossing to triplet state, then T-T absorption creates an excited triplet dibenzanthracene molecule, which returns to the first excited singlet level by intersystem crossing. The re-created first excited singlet of dibenzanthracene decays back to the ground state by emitting B-type of delayed fluorescence, which was observed at the same emission band of prompt (normal) fluorescence, and R-, E-, P-types of delayed fluorescences. For normal fluorescence, S1 state is decaying to S0 ground state. For E- and P-type of delayed fluorescences, T1 state is decaying to S0 via S1 state, and for B-type of delayed fluorescence, T2 state is decaying to S0 via S1 state.  相似文献   

10.
The nature and properties of the low-lying singlet and triplet valence excited states of 2,2':5',2'-terthiophene (terthiophene) and 2,2':5',2':5',2'-quaterthiophene (tetrathiophene) are discussed on the basis of high-level ab initio computations. The spectroscopic features determined experimentally for short alpha-oligothiophenes are rationalised on theoretical grounds. Special attention is devoted to the nonradiative decay process through intersystem crossing (ISC) from the singlet to the triplet manifold, which is known to be relatively less efficient in tetrathiophene. Along the geometry relaxation of the S1 state of terthiophene, the S1 and T2 states become degenerate, which leads to a favourable situation for the occurrence of ISC. The parallel process is expected to be less favoured in tetrathiophene because of the less efficient spin-orbit coupling and the increase of the S1-T2 energy gap.  相似文献   

11.
The triplet kinetics of a conjugated polymer, polyspirobifluorene, have been studied using time resolved photoinduced absorption spectroscopy and gated emission delayed fluorescence. Working on isolated polymer chains in dilute solution, we pay particular attention to the buildup and decay of the triplet states following intersystem crossing from the excited singlet state. Confirmation of intersystem crossing as a monomolecular cold process has been made. At high excitation powers an initial fast decay of the triplet has been observed; this is attributed to intrachain triplet-triplet annihilation. From this observation we estimate the lower bound of the intersystem crossing yield as 1.2%. We also calculate the intrachain annihilation constant to be (2.9+/-0.1)x 10(8) cm(3) s(-1).  相似文献   

12.
Abstract— Pyrazinopsoralen (PzPs), a new monofunctional psoralen, has a UV absorption spectrum similar to other psoralens except that it absorbs more strongly in the long-UVA than 8-methoxypsoralen. The solvent effects on the UV absorption and fluorescence emission spectra indicate that the lowest excited singlet state is the π,π* state like other psoralen derivatives. It shows a much lower fluorescence quantum yield (0.0008 in ethanol at room temperature) than the other psoralens as expected by the increased proximity effect (vibronic perturbation) due to close 1(n,π*) to 1(π,π*) states. The fluorescence lifetime was 1.05 ns in methylcyclohexane with a single exponential decay, while more than two components were observed in other solvents with the short-lived component being the major (>95%). The triplet state of PzPs could not be detected by phosphorescence, laser flash excitation (T-T absorption) and singlet oxygen formation probably due to very low φisc, or short lifetime of the triplet state (τT) caused by the fast T1→ S0 intersystem crossing.  相似文献   

13.
The electronic singlet-singlet and singlet-triplet electronic transitions of the isoalloxazine ring of the flavin core are studied using second-order perturbation theory within the framework of the CASPT2//CASSCF protocol. The main features of the absorption spectrum are computed at 3.09, 4.28, 4.69, 5.00, and 5.37 eV. The lowest singlet (S1) and triplet (T1) excited states are found to be both of pi character with a singlet-triplet splitting of 0.57 eV. On the basis of the analysis of the computed spin-orbit couplings and the potential energy hypersurfaces built for the relevant excited states, the intrinsic mechanism for photoinduced population of T1 is discussed. Upon light absorption, evolution of the lowest singlet excited state along the relaxation pathway leads ultimately to the population of the lowest triplet state, which is mediated by a singlet-triplet crossing with a state of npi* type. Subsequently a radiationless decay toward T1 through a conical intersection takes place. The intersystem crossing mechanism and the internal conversion processes documented here provide a plausible route to access the lowest triplet state, which has a key role in the photochemistry of the flavin core ring and is mainly responsible for the reactivity of the system.  相似文献   

14.
An extensive photophysical characterization of 3-chloro-4-methylumbelliferone (3Cl4MU) in the ground-state, S(0), first excited singlet state, S(1), and lowest triplet state, T(1), was undertaken in water, neutral ethanol, acidified ethanol, and basified ethanol. Quantitative measurements of quantum yields (fluorescence, phosphorescence, intersystem crossing, internal conversion, and singlet oxygen formation) together with lifetimes were obtained at room and low temperature in water, dioxane/water mixtures, and alcohols. The different transient species were assigned and a general kinetic scheme is presented, summarizing the excited-state multiequilibria of 3Cl4MU. In water, the equilibrium is restricted to neutral (N*) and anionic (A*) species, both in the ground (pK(a) = 7.2) and first excited singlet states (pK(a)* = 0.5). In dioxane/water mixtures (pH ca. 6), substantial changes of the kinetics of the S(1) state were observed with the appearance of an additional tautomeric T* species. In low water content mixtures (mixture 9:1 v:v), only the neutral (N*) and tautomeric (T*) forms of 3Cl4MU are observed, whereas at higher water content mixtures (water mole fraction superior to 0.45), all three species N*, T*, and A* coexist in the excited state. In the triplet state, in the nonprotic and nonpolar solvent dioxane, the observed transient signals were assigned as the triplet-triplet transition of the neutral form, N*(T(1)) → N*(T(n)). In water, two transient species were observed and are assigned as the triplets of the neutral N*(T(1)) and the anionic form, A*(T(1)) (also obtained in basified ethanol). The phosphorescence spectra and decays of 3Cl4MU, in neutral, acidified, and basified solutions, demonstrate that only these two species N*(T(1)) and A*(T(1)) exist in the lowest lying triplet state, T(1). The radiative channel was found dominant for the deactivation of the anionic species, whereas with the neutral the S(1) ? S(0) internal conversion competes with fluorescence. For both N* and A* the intersystem crossing yield represents a minor deactivation channel for S(1).  相似文献   

15.
Molecular vibration and rotation play a significant role in the intramolecular photoexcitation dynamics of the so-called intermediate-case molecule, and the fluorescence intensity, decay and polarization of s-triazine vapor are shown to depend on the excited rovibronic level of the S1 state. Fluorescence characteristics are interpreted by assuming three zero-order states: (1) a zero-order singlet state that carries the absorption intensity and emits fluorescence with sharp structure; (2) zero-order singlet states that do not carry the absorption intensity but emit broad fluorescence; and (3) zero-order triplet states. The interaction among these states depends not only on the vibrational level but also on the rotational level excited. It is suggested that the number of triplet states coupled to the singlet state increases with increasing excess vibrational energy. It is also suggested that K-scrambling occurs both in the triplet manifold following intersystem crossing (ISC) and in the singlet manifold following intramolecular vibrational energy redistribution (IVR). The fluorescence intensity and decay of s-triazine vapor are significantly influenced by a magnetic field, and the field effects are interpreted in terms of the spin decoupling in the triplet manifold following ISC; the role of external magnetic fields is to mix the spin sublevels of different rovibronic levels coupled to the excited singlet state. Magnetic depolarization of fluorescence also occurs because of the efficient interaction between the excited singlet state and the triplet state.  相似文献   

16.
Abstract— Nanosecond and picosecond. kinetic techniques have been used to study electron transfer from the first excited singlet state (Bph*) and the first excited triplet state (Bph T ) of bacteriopheophytin to p -benzoquinone. Quenching of the first excited singlet state by 40 m M p -benzoquinone results in a decrease in the lifetime of Bph* but does not lead directly to the formation of the π-cation radical (Bph†). In the presence of 8 M methyl iodide and 40 m M p -benzoquinone together, the singlet lifetime is reduced further; however, the quantum yield of Bph T is enhanced due to the increased rate of intersystem crossing between Bph* and Bph T . Electron transfer from Bph T to p -benzoquinone leads to the formation and detection of Bph†. The results are discussed in terms of the spin-selectivity of the reverse electron transfer process within the intermediate charge transfer complexes.  相似文献   

17.
Quantum-chemical calculations of ground and excited states for membrane fluorescent probe 4-dimethylaminochalcone (DMAC) in vacuum were performed. Optimized geometries and dipole moments for lowest-lying singlet and triplet states were obtained. The nature of these electronic transitions and the relaxation path in the excited states were determined; changes in geometry and charge distribution were assessed. It was shown that in vacuum the lowest existed level is of (n, π*) nature, and the closest to it is the level of (π, π*) nature; the energy gap between them is narrow. This led to an effective (1)(π, π*) →(1)(n, π*) relaxation. After photoexcitation the molecule undergoes significant transformations, including changes in bond orders, pyramidalization angle of the dimethylamino group, and planarity of the molecule. Its dipole moment rises from 5.5 Debye in the ground state to 17.1 Debye in the (1)(π, π*) state, and then falls to 2 Debye in the (1)(n, π*) state. The excited (1)(n, π*) state is a short living state; it has a high probability of intersystem crossing into the (3)(π, π*) triplet state. This relaxation path explains the low quantum yield of DMAC fluorescence in non-polar media. It is possible that (3)(π, π*) is responsible for observed DMAC phosphorescence.  相似文献   

18.
Excited-state dynamics of 4-thiothymidine (S4-TdR) and its photosensitization to molecular oxygen in solution with UVA irradiation were investigated. Absorption and emission spectra measurements revealed that UVA photolysis of S4-TdR gives rise to a population of T1(pipi*), following S2(pipi*) --> S1(npi*) internal conversion. In transient absorption measurement, the 355 nm laser photolysis gave broad absorption (380-600 nm) bands of triplet S4-TdR. The time-resolved thermal lensing (TRTL) signal of S4-TdR containing the thermal component due to decay of triplet S4-TdR was clearly observed by the 355 nm laser excitation. The quantum yield for S1 --> T1 intersystem crossing was estimated to be unity by a triplet quenching experiment with potassium iodide. In the presence of molecular oxygen, the photosensitization from triplet S4-TdR gave rise to singlet oxygen O2 (1Deltag) with a quantum yield of 0.50. Therapeutic implications of such singlet oxygen formation are discussed.  相似文献   

19.
We present a spectroscopic study of terrylene in anthracene crystals at the ensemble and single-molecule levels. In this matrix, single-molecule fluorescence is reduced by three orders of magnitude. Correlation measurements allow us to identify a new relaxation channel, matrix-enhanced intersystem crossing. This process starts with a singlet-to-triplet energy transfer from guest to host, after which the triplet exciton is transferred back to the guest. The intermolecular intersystem crossing is expected whenever the lowest triplet state of the host is located between the lowest singlet S(1) and lowest triplet T(1) excited states of the guest. It must be considered when searching for new host-guest systems for single-molecule spectroscopy.  相似文献   

20.
This paper describes the results of a study of the photophysical properties of various methyl-angelicins (MA) in solvents of different polarity and proticity. The behavior of their excited singlet and triplet states was investigated by fluorometry and nanosecond laser flash photolysis. On the basis of semiempirical (ZINDO/S-CI) calculations and the solvent effect on the absorption and fluorescence properties, the lowest excited singlet state (S1) is assigned to a partially allowed π, π* state. The close lying S2 state is n,π* in nature. The efficiency of the decay pathways of S1 (fluorescence, intersystem crossing and internal conversion) strongly depends on the energy gap between the S1 and S2 states consistent with the manifestation of “proximity effect.” Thus, MA in cyclohexane decay only through S1→ S0 internal conversion, while in acetonitrile and ethanol, where the n, π* state is located at higher energy, their fluorescence and intersystem crossing increase significantly. The lowest excited triplet states (T1) were characterized in terms of their absorption spectra, decay kinetics, molar absorption coefficients and formation quantum yields. The interaction of T1 MA with molecular oxygen leads to an efficient formation of singlet oxygen, as evidenced by the appearance of characteristic IR phosphorescence centered at 1269 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号