首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An alternative technique, called projection method, for solving constrained system problems is presented. This approach can be used to derive equations of motion of both holonomic and nonholonomic systems, and the dynamic equations can be expressed in generalized velocities and/or quasi-velocities. Compared against the other methods of classical mechanics (Lagrange's, Gibbs-Appell, Kane's,...), the present method turns out to be extraordinarily short, elementary and general. As such, it deserves to be promoted as a generally accepted method in academic and engineering applications. Three examples are reported to illustrate advantages of the technique  相似文献   

2.
The purpose of this paper is twofold. First, we use Lagrange''s method and the generalized eigenvalue problem to study systems of two quadratic equations. We find exact conditions so the system can be codiagonalized and can have up to $4$ solutions. Second, we use this result to study homoclinic bifurcations for a periodically perturbed system. The homoclinic bifurcation is determined by $3$ bifurcation equations. To the lowest order, they are $3$ quadratic equations, which can be simplified by the codiagonalization of quadratic forms. We find that up to $4$ transverse homoclinic orbits can be created near the degenerate homoclinic orbit.  相似文献   

3.
4.
The importance of lightweight constructions are steady increasing since they promise a low energy consumption together with higher movement speeds. However these demand modern, model-based feed-forward control designs. Especially the undesired vibrations due to the reduced overall stiffness of such manipulators have to be taken into account. A convenient way to model the dynamical behavior of systems that perform large, nonlinear motions superposed with small, elastic deformations is the floating frame of reference approach in a flexible multibody system. The application of the Newton-Euler-Formalism together with D'Alembert's principle to parallel manipulators results in a set of differential-algebraic equations. Therefore, the consideration of the trajectory tracking problem with so-called servo constraints appears to be promising. In case of a non-flat system, the arising set of differential-algebraic equations, which consists of the system dynamics, the holonomic loop closing constraint equations and the servo constraints embodies nontrivial dynamics. With an oblique projection, the embedded set of ordinary differential equations describing the internal dynamics can be obtained. The stability properties of these dynamics determines the complexity of the feed-forward control design, as two-point boundary value problems might have to be solved. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We study the Cauchy problem for a linear differential-algebraic system of equations with concentrated delay. Our research continues investigation of solvability of linear Noether boundary value problems for systems of functional-differential equations given in the monographs by A.D. Myshkis, N.V. Azbelev, V.P. Maksimov, L.F. Rakhmatullina, A.M. Samoilenko, and A.A. Boichuk; meanwhile, we use essentially the tool of Moore-Penrose inverse matrices. For a linear differential-algebraic system with concentrated delay, we find sufficient conditions for its solvability and give a construction of generalized Green’s operator for Cauchy’s problem. We also give some examples which illustrate in detail the solvability conditions and the suggested construction.  相似文献   

6.
We are interested in circuit simulation including distributed semiconductor models. The circuit itself is modeled by the modified nodal analysis. The stationary drift diffusion equations are used to describe the semiconductors. The complete system is then a partial differential-algebraic system. We discretize it first in space with finite elements and the Scharfetter-Gummel discretization. The resulting semi-discrete system can be analyzed as a differential-algebraic equation with properly stated leading term. We present topological index one criteria. They coincide with previous results for the non-discretized partial differential-algebraic equation. For the time discretization we use standard BDF methods (implicit Gear formulas). Finally we derive a convergence estimate for the whole partial differential-algebraic system close to equilibrium.  相似文献   

7.
In this communication, the Rodriguez method is proposed for modeling dynamics of the robotic system, where Lagrange's equations of second kind of rigid bodies system in covariant form are used. Discrete hybrid elements with so called piezo-modified Kelvin-Voight (PKV) and magnetorheological (MRD) type of viscoelastic models with fractional order derivatives are introduced in to the system of motion equations by means of generalized forces. The results obtained are illustrated by numerical examples. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
This paper is addressed to some questions concerning the exponential stability and its robustness measure for linear time-varying differential-algebraic systems of index 1. First, the Bohl exponent theory that is well known for ordinary differential equations is extended to differential-algebraic equations. Then, it is investigated that how the Bohl exponent and the stability radii with respect to dynamic perturbations for a differential-algebraic system depend on the system data. The paper can be considered as a continued and complementary part to a recent paper on stability radii for time-varying differential-algebraic equations [N.H. Du, V.H. Linh, Stability radii for linear time-varying differential-algebraic equations with respect to dynamic perturbations, J. Differential Equations 230 (2006) 579-599].  相似文献   

9.
The problem of estimating the mean time a weakly perturbed dynamical system stays in a fixed region of the phase variables is investigated. The motion is described by Lagrange's equations with an attractive force potential and in the presence of additive dissipative forces. The corresponding Cauchy problem is obtained in Hamiltonian variables for a non-linear first-order partial differential equation. Its classical positive solution specifies the action functional and the estimate sought for the time interval. The structure of the equations that allows of an explicit solution in terms of expressions for the kinetic and potential energy, as well as dissipative and dispersion matrices for a random Wiener-type perturbation, is established. The phenomenon of the escape of a phase point from different parts of the boundary of the region is investigated. Interesting problems of estimating the time for the inversion of the inner gimbal of a gyroscope, the time taken to reach an assigned level or a potential barrier of a multidimensional oscillatory system that has central symmetry, and the time a non-linear system with two degrees of freedom takes to escape over a potential barrier for a Henon–Heiles potential are investigated as examples.  相似文献   

10.
An orbital tether system, including a satellite (a rigid body), an elastic ponderable tether and a terminal load, is investigated. A mathematical model is obtained using Lagrange's equation of the second kind, which enables the plane translational motion of the centres of mass of the elements of the system and the rotational motion of the satellite and the tether to be investigated. It is shown that the equations of motion for the new independent variable, that is, the true anomaly angle, obtained on the assumption that the motion of the centre of mass of the system is independent of the relative motion of its elements, are an extension of the known mathematical models. The effect of the elasticity of the tether on the angular oscillations of the tether and the satellite is investigated. The model constructed can be used both to analyse of the deployment of a tether system as well as to investigate of the combined behaviour of a satellite and a tether about the natural centres of mass.  相似文献   

11.
The paper describes a two-dimensional mathematical model to evaluate stresses in welded joints formed in multi-pass welding of multi-layered steels. The model is based on a system of equations that includes the Lagrange's variational equation of the incremental theory of plasticity and the Biot's variational principle for heat transfer simulation. In the constitutive equations, the changes in the volume which occur as a result of phase transitions can be taken into account. Therefore, the prehistory and impact of thermal processing of materials on macroscopic properties of the medium can be considered.The variational-difference method is used to solve both the heat transfer equation for calculation of the non stationary temperature field and the quasi-static problem of thermoplasticity at each time-step. The two-dimensional problems were solved to estimate the residual thermal stresses (for the case of plane stress or plane strain) during cooling of welds and assessing their impact on strain localization in the heat-affected zone under tensile and compressive loading considering differences in mechanical properties of welded materials.It is shown that at initial stages of the plastic flow, the residual stresses significantly affect the processes of stress concentration and localization of strains in welded joints. To estimate the model parameters and to verify the modeling results, the available experimental data from scientific literature obtained on the basis of the Satoh test for different welding alloys was used.  相似文献   

12.
A new approach for optimization of control problems defined by fully implicit differential-algebraic equations is described in the paper. The main feature of the approach is that system equations are substituted by discrete-time implicit equations resulting from the integration of the system equations by an implicit Runge–Kutta method. The optimization variables are parameters of piecewise constant approximations to control functions; thus, the control problem is reduced to the control space only. The method copes efficiently with problems defined by large-scale differential-algebraic equations.  相似文献   

13.
14.
The nonlinear modeling and subsequent dynamic analysis of cracked Timoshenko beams with functionally graded material (FGM) properties is investigated for the first time using harmonic balance method followed by an iterative technique. Crack is assumed to be open throughout. During modeling, nonlinear strain–displacement relation is considered. Rotational spring model is adopted in order to model the open cracks. Energy formulations are established using Timoshenko beam theory. Nonlinear governing differential equations of motion are derived using Lagrange's equation. In order to incorporate the influence of higher order harmonics, harmonic balance method is employed. This reduces the governing differential equations into nonlinear set of algebraic equations. These equations are solved using two different iterative techniques. Methodology is computationally easier and efficient as well. This is observed that although assumption of simple harmonic motion (SHM) simplifies the problem, it yields to erroneous results at higher amplitude of motion. However, accuracy of the solution is improved considerably when the contribution of higher order harmonic terms are considered in the analysis. Results are compared with the available results, which confirm the validity of the methodology. Subsequent to that a parametric study on influence of forcing term, material indices and crack parameters on large amplitude vibration of Timoshenko beams is performed for two different boundary conditions.  相似文献   

15.
Jure Ravnik  Leopold Škerget 《PAMM》2014,14(1):841-842
The boundary-domain integral method uses Green's functions to write integral representations of partial differential equations. Since Green's functions are non-local, the systems of linear equations arising from the discretization of integral representations are fully populated. Several algorithms have been proposed, which yield a data-sparse approximation of these systems, such as the fast multipole method, adaptive cross approximation and among others, wavelet compression. In the framework of solving the Navier-Stokes equations in velocity-vorticity form one may utilize the boundary-domain integral method for the solution of the kinematics equation to calculate the boundary vorticity values. Since the kinematics equation is a Poisson type equation, usually its integral representation is written with the Green's function for the Laplace operator. In this work, we introduce a false time into the equation and parabolize its nature. Thus, a time-dependent Green's function may be used. This provides a new parameter, the time step, which can be set to control the Green's function. The time-dependent Green's function is a global function, but by carefully choosing the time step, its behaviour is almost local. This makes it a good candidate for wavelet compression, yielding much better compression ratios at a given accuracy than when using the Green's function for the Laplace operator. However, as false time is introduced, several time steps must be solved in order to reach a converged solution. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Dominik Kern  Georg Jehle 《PAMM》2016,16(1):279-280
A rotor partially filled with a viscous incompressible fluid is modeled as planar system. Its structural part, i. e. the rotor, is assumed to be rigid, circular, elastically supported and running with a prescribed time-dependent angular velocity. Both parts, structure and fluid, interact via the no-slip condition and the pressure. The point of departure for the mathematical formulation of the fluid filling is the Navier-Stokes equation, which is complemented by an additional equation for the evolution of its free inner boundary. Further, rotor and fluid are subjected to volume forces, namely gravitation. Trial functions are chosen for the fluid velocity field, the pressure field and the moving boundary, which fulfill the incompressibility constraint as well as the boundary conditions. Inserting these trial functions into the partial differential equations of the fluid motion, and applying the method of weighted residuals yields equations with time derivatives only. Finally, in combination with the rotor equations, a nonlinear system of 12 differential-algebraic equations results, which sufficiently describes solutions near the circular symmetric state and which may indicate the loss of its stability. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present a method, based on approximation theory, for the solution of optimum control problems of differential-algebraic systems of any index. Its essence is the rendering of any optimum control formulation of systems of differential-algebraic equations into one of a pure optimum control formulation of the Bolza type by means of characteristic functions approximated by damped pseudo-spectral expansions.  相似文献   

18.
To model transmission lines effects in integrated circuits, we couple the network equations for the circuits with the telegrapher's equations for the transmission lines. This results in an initial/boundary value problem for a mixed system of Differential-Algebraic Equations (DAEs) and hyperbolic Partial Differential Equations (PDEs). By semidiscretization the system is transformed into differential-algebraic equations in time only. We apply this modeling approach to a CMOS ring oscillator, an oscillatory circuit with transmission lines as coupling units, and discuss the simulation results.  相似文献   

19.
Remainder problems have a long tradition and were widely disseminated in books on calculation, algebra, and recreational mathematics from the 13th century until the 18th century. Many singular solution methods for particular cases were known, but Bachet de Méziriac was the first to see how these methods connected with the Euclidean algorithm and with Diophantine analysis (1624). His general solution method contributed to the theory of equations in France, but went largely unnoticed elsewhere. Later Euler independently rediscovered similar methods, while von Clausberg generalized and systematized methods that used the greatest common divisor procedure. These were followed by Euler's and Lagrange's continued fraction solution methods and Hindenburg's combinatorial solution. Shortly afterwards, Gauss, in the Disquisitiones Arithmeticae, proposed a new formalism based on his method of congruences and created the modular arithmetic framework in which these problems are posed today.  相似文献   

20.
We study the vibration of lumped parameter systems whose constituents are described through novel constitutive relations, namely implicit relations between the forces acting on the system and appropriate kinematical variables such as the displacement and velocity of the constituent. In the classical approach constitutive expressions are provided for the force in terms of appropriate kinematical variables, which when substituted into the balance of linear momentum leads to a single governing ordinary differential equation for the system as a whole. However, in the case considered we obtain a system of equations: the balance of linear momentum, and the implicit constitutive relation for each constituent, that has to be solved simultaneously. From the mathematical perspective, we have to deal with a differential-algebraic system. We study the vibration of several specific systems using standard techniques such as Poincaré’s surface of section, bifurcation diagrams, and Lyapunov exponents. We also perform recurrence analysis on the trajectories obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号