首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive semi-micro column high-performance liquid chromatography with fluorescence detection method was developed for the determination of 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), methamphetamine (MP) and amphetamine (AP) in human hair. 4-(4,5-Diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl) and 1-methyl-3-phenylpropylamine were used as labeling reagent and internal standard, respectively. These drugs were extracted from hair into 5% trifluoroacetic acid in methanol, and fluorescent labeled with DIB-Cl. The separation of DIB-derivatives was achieved on a reversed-phase semi-micro ODS column with an acetonitrile-methanol-water (30:40:30, v/v/v%) mixture as a mobile phase. The limits of detection at a signal-to-noise ratio of 3 for MDMA, MDA, MP and AP were 0.25, 0.15, 0.25 and 0.19 ng/mg, respectively. Precision of intra- and inter-day assay as the relative standard deviation were in the range 1.5-6.8% (n = 5) and 2.7-4.7% (n = 5), respectively. The proposed method was highly sensitive and able to detect MDMA and its related compounds in small amounts of hair sample, and could be applied to quantification of six abusers' hair samples.  相似文献   

2.
A capillary electrophoresis/mass spectrometry method for the simultaneous chiral analysis of enantiomers of methamphetamine (MA), amphetamine (AP), dimethylamphetamine (DMA), ephedrine (EP), norephedrine (NE) and methylephedrine (ME) in urine has been developed. The background electrolyte was 1 M formic acid (pH 1.7). Using 0.85 mM heptakis(2,6-diacethyl-6-sulfato)-beta-cyclodextrin as the chiral selector, the 12 enantiomers were completely separated within 25 min. The detection limits were 0.01 microg mL(-1) for the enantiomers of MA, AP, DMA, EP and ME, and 0.02 microg mL(-1) for the enantiomers of NE using selected ion monitoring. The reproducibilities of within-run (n = 4) for the migration times and peak areas of the standard mixture were under 0.58% and 7.83%, respectively. The calibration curves of the peak areas of the 12 enantiomers were linear in the range of 0.05 - 10 microg mL(-1). This method was applicable to the analysis of urine samples.  相似文献   

3.
Diao P  Yuan H  Huo F  Chen L  Xiao D  Paau MC  Choi MM 《Talanta》2011,85(3):1279-1284
A simple and sensitive method has been developed for simultaneous analysis of three catecholamines: dopamine (DA), epinephrine (EP) and norepinephrine (NE) in urine by capillary electrophoresis (CE) coupled with in-column fiber-optic light-emitting diode-induced fluorescence detection (ICFO-LED-IFD). Fluorescein isothiocyanate was used as the fluorescence tagged reagent for derivatization of DA, EP and NE. The CE conditions for separation of these catecholamines were systematically investigated. It was found that catecholamines could be more effectively separated by adding β-cyclodextin (β-CD) and acetonitrile (ACN) to a background electrolyte (BGE) of sodium borate. The migration times are 10.61, 10.83 and 11.14 min for DA, EP and NE, respectively and the catecholamines are completely separated within 11.5 min under the optimal condition of a BGE containing 10% v/v ACN, 20 mM β-CD and 20 mM sodium borate (pH 9.5), and an applied voltage of 13 kV. The relative standard deviations of migration time and peak area for these catecholamines are less than 0.16 and 2.0%, respectively. The limit of quantifications (LOQs) for DA, EP and NE are 3.5, 1.0 and 3.1 nM whereas the limit of detections (LODs) for DA, EP and NE are 1.0, 0.3 and 0.9 nM, respectively. Our proposed CE method provides low LOQ and LOD values. This CE-ICFO-LED-IFD methodology has been successfully applied to analyze catecholamines in human urine samples with good accuracy and satisfactory recovery.  相似文献   

4.
This paper describes a highly sensitive HPLC method for the simultaneous determination of 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), amphetamine (AP) and methamphetamine (MP) in human hair samples. The amphetamines investigated were derivatized with the fluorescent reagent, DIB-Cl to yield highly fluorescent DIB-derivatives, which were then analyzed by HPLC with fluorescence detection at excitation and emission wavelengths of 325 nm and 430 nm, respectively. The separation was achieved on an ODS column with an isocratic mobile phase composed of acetonitrile-methanol-water (30:40:30, v/v/v). The limits of detection for the four compounds obtained by the proposed method ranged from 11 to 200 pg/mg. The method was successfully applied to the determination of MDMA and MDA in hair samples obtained from MDMA abuser.  相似文献   

5.
Lin Z  Wu X  Lin X  Xie Z 《Journal of chromatography. A》2007,1170(1-2):118-121
A simple and convenient end-column chemiluminescence (CL) detection coupled to pressurized capillary electrochromatography (pCEC) was described. Luminol and N-(4-aminobutyl)-N-ethylisoluminol (ABEI) were adopted as mode compounds to evaluate the feasibility of end-column reactor. Detailed analysis of ABEI revealed that the high sensitivity could be obtained with the reactor. Furthermore, determination of norepinephrine (NE) and epinephrine (EP), which were labeled with ABEI, was accomplished by using the end-column pCEC-CL detection based on ABEI-potassium ferricyanide-alkaline medium CL reaction system. Under the optimum conditions, the detection limit (S/N=3) of NE and EP was 0.08 microM and 0.06 microM, respectively. The proposed method has also been successfully applied to the analysis of adrenaline hydrochloride injection sample.  相似文献   

6.
A reversed-phase high-performance liquid chromatographic assay with ultraviolet detection at 243 nm has been developed for the quantitative determination of methylprednisolone (MP) and methylprednisolone 21-[8-[methyl-(2-sulfoethyl)amino]-8-oxooctanoate] sodium salt (MPSO) in human urine following therapeutic doses in humans. The assay procedure involves stabilization of urine samples by addition of disodium ethylenediaminetetraacetic acid (Na2EDTA) and ion-pair extractions of MPSO using tetraethylammonium chloride (TEACl) as the counter ion. After extracting both drugs and internal standard into chloroform, the extract was evaporated to dryness under nitrogen. The resulting residue was reconstituted in 200-500 microliters of mobile phase and chromatographed on an IBM C18 reversed-phase column (5 microns). The mobile phase was a mixture of water-acetonitrile-isopropanol (71.2:18.8:10.0, v/v) containing 75 microliters of 0.1 M hydrochloric acid and 0.450 g of TEACl per liter. Propyl p-hydroxybenzoate was used as an internal standard. The extraction efficiencies of MP and MPSO were greater than 90% using the ion-pairing agent TEACl. The chromatographic responses were linear up to about 200 micrograms/ml for MP and 80 micrograms/ml for MPSO and had sufficient precision and accuracy to provide quantitative data from human urine. The assay detection limit was about 8 ng/ml for MP and 25 ng/ml for MPSO in human urine. Stability studies in urine indicated that without Na2EDTA stabilization and at room temperature, rapid degradation of MPSO occurred in urine. Addition of EDTA to the urine specimen and storage at -70 degrees C increased the stability of MPSO, and little or no degradation was observed in urine stored for more than 60 days. The method has been used in the simultaneous determination of MP and MPSO in urine specimens obtained from a single-dose tolerance study of MPSO in normal male volunteers.  相似文献   

7.
Single drop liquid-liquid-liquid microextraction (LLLME) combined with high performance liquid chromatography (HPLC)-UV detection was investigated for the determination of a popular drug of abuse, methamphetamine (MAP), and its major metabolite, amphetamine (AP), in urine samples. The target compounds were extracted from NaOH modified sample solution to a thin layer of organic solvent membrane, and back-extracted to an acidic acceptor drop suspended on the tip of a 50-microL HPLC syringe in the aforementioned organic layer. This syringe was also used for direct injection after extraction. Factors affecting extraction efficiency were studied. At optimal conditions, the overall enrichment factor (EF) was 500-fold for AP and 730-fold for MAP, respectively. The method exhibited a wide linear range (1.0-1500 microg/L), low detection limit (0.5 microg/L), and good repeatability (RSD<5.0%) for both analytes. The feasibility of the method was demonstrated by the analysis of human urine samples.  相似文献   

8.
CE methods with capacitively coupled contactless conductivity detection (C4D) were developed for the enantiomeric separation of the following stimulants: amphetamine (AP), methamphetamine (MA), ephedrine (EP), pseudoephedrine (PE), norephedrine (NE) and norpseudoephedrine (NPE). Acetic acid (pH 2.5 and 2.8) was found to be the optimal background electrolyte for the CE‐C4D system. The chiral selectors, carboxymethyl‐β‐cyclodextrin (CMBCD), heptakis(2,6‐di‐O‐methyl)‐β‐cyclodextrin (DMBCD) and chiral crown ether (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid (18C6H4), were investigated for their enantioseparation properties in the BGE. The use of either a single or a combination of two chiral selectors was chosen to obtain optimal condition of enantiomeric selectivity. Enantiomeric separation of AP and MA was achieved using the single chiral selector CMBCD and (hydroxypropyl)methyl cellulose (HPMC) as the modifier. A combination of the two chiral selectors, CMBCD and DMBCD and HPMC as the modifier, was required for enantiomeric separation of EP and PE. In addition, a combination of DMBCD and 18C6H4 was successfully applied for the enantiomeric separation of NE and NPE. The detection limits of the enantiomers were found to be in the range of 2.3–5.7 μmol/L. Good precisions of migration time and peak area were obtained. The developed CE‐C4D method was successfully applied to urine samples of athletes for the identification of enantiomers of the detected stimulants.  相似文献   

9.
A new method for determination for catecholamines (CA) utilizing microchip technology and a thermal lens microscope has been developed. Microchannels with a 250 microm x 10 microm cross section were used for mixing, reaction, and detection. Epinephrine (EP), nor-epinephrine (NE), dopamine (DA), and L-dopa (LD) were determined by using coloring oxidization to aminochromes by sodium metaperiodate. A thermal lens microscope (TLM) was used for detection of the product. The sensitivity of the system was comparable for the four CA and required only 15 s for mixing of sample and reagent. The calibration lines indicated excellent linearity for concentrations of 5-20 microg mL(-1). The relative standard deviations for 10 microg mL(-1) solution were 1.08, 2.18, 2.2, and 2.5% for EP, NE, DA, and LD, respectively. CA in pharmaceutical injections were also determined by use of the system and the results correlated very well with nominal values. Results obtained by use of the integrated system suggested there was a sufficient possibility to realize high-throughput medical diagnosis systems.  相似文献   

10.
苑广信  何巧红  陈恒武  方群  张燕冰 《分析化学》2006,34(12):1693-1696
研究用芯片毛细管电泳激光诱导荧光检测系统分离测定经7-chloro-4-n itrobenzo-2-oax-1,3-d iazole(NBD-C l)衍生的麻黄碱和伪麻黄碱的实验条件。采用胶束毛细管电动色谱分离体系(12 mmol/L SDS 10mmol/L硼砂缓冲液,pH 9.0),在45 mm长的通道上实现了麻黄碱和伪麻黄碱的快速分离,一次分离小于1.5m in。10~100 mg/L范围内,峰高与浓度呈良好的线性关系,麻黄碱、伪麻黄碱的检出限分别是0.83 mg/L和1.10 mg/L。所建立的方法应用于尿中麻黄碱和伪麻黄碱的分离测定,取得满意的结果。  相似文献   

11.
This paper describes highly sensitive HPLC methods for the determination of amphetamine (AP) and methamphetamine (MP) in abusers' plasma and hair samples. AP and MP were derivatized with the fluorescent reagent, DIB-Cl, to yield a highly fluorescent DIB-derivatives of AP and MP, which were then analyzed by HPLC with fluorescence detection at excitation and emission wavelengths of 325 and 430 nm, respectively. The separation was achieved on an ODS column with isocratic mobile phases composed of acetoniltrile and citrate buffer (55:45, v/v) for plasma samples and of acetonitrile-methanol-citrate buffer (45:20:37.5, v/v/v) for hair samples. The limits of detection were less than 0.87 ng/mL and 0.12 ng/mg in plasma and hair samples, respectively, for both AP and MP. The methods were then applied to the determination of MP and its metabolite AP in plasma obtained from two cases of illegally ingested MP and in one of the cases' hair received later. Case I was treated with dialysis; samples before and after dialysis were analyzed by the described method. After dialysis for 5 h, the total plasma levels of AP and MP decreased from 720 to 190 ng/mL. For case II, MP and AP levels were monitored for 3 days after digestion. Total plasma levels decreased from 57 ng/mL in the day of digestion to 11 ng/mL after 3 days. In hair samples, AP and MP could also be detected in very low concentrations.  相似文献   

12.
Electrophoretic separation of tryptophan enantiomers in biological samples.   总被引:1,自引:0,他引:1  
S Zhao  Y M Liu 《Electrophoresis》2001,22(13):2769-2774
A method for the determination of D- and L-tryptophan (Trp) in biological samples is described. The amino acid enantiomers were precolumn-derivatized with a fluorescence tagging reagent, naphthalene-2,3-dialdehyde (NDA). In the presence of hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) as the chiral selector, NDA-tagged Trp enantiomers were well resolved by micellar electrokinetic chromatography (MEKC). Using laser induced fluorescence (LIF) detection, a detection limit of 3.3 x 10(-8) M Trp was obtained. The method was applied to the determination of Trp enantiomers in biological samples including human urine and cerebrospinal fluid (CSF), rat brain tissue, and Aplysia ganglia. No interference from other amino acids or the endogenous compounds in the sample matrices was observed. D-Trp was found at the sub-microM level in human urine samples collected from several healthy subjects. Further, the determination of DL-Trp residues in small quantities (10 microg) of peptides after acid hydrolysis is demonstrated.  相似文献   

13.
For the first time, electrospun composite nanofibers comprising polymeric crown ether with polystyrene (PCE‐PS) have been used for the selective extraction of catecholamines – dopamine (DA), norepinephrine (NE) and epinephrine (E) – prior to their analysis by high‐performance liquid chromatography–electrochemical detection. Using a minicartridge packed with PCE‐PS composite nanofibers, the target compounds were extracted effectively from urine samples to which diphenylborinic acid 2‐aminoethyl ester was added as a complexing reagent. The extracted catecholamines could be liberated from the fiber by the addition of acetic acid. A good linearity was observed for catecholamines in the range of 2.0–200 ng mL?1 (NE, E and DA). The detection limits of catecholamines (signal‐to‐noise ratio = 3) were 0.5 ng mL?1 (NE), 0.2 ng mL?1 (E) and 0.2 ng mL?1 (DA), respectively. Under the optimized conditions, the absolute recoveries of the above three catecholamines were 90.6% (NE), 88.5% (E) and 94.5% (DA). The repeatability of extraction performance was from 5.4 to 9.2% (expressed as relative standard deviation). Our results indicate that the proposed method could be used for the determination of NE, E and DA in urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A capillary electrophoresis method with ultraviolet (UV) detection was developed and optimized for the enantiomer separation of norepinephrine (NE), epinephrine (EP) and isoprenaline (IP) using dual cyclodextrins (CDs) of 2-hydroxypropyl-beta-CD (HP-beta-CD) and heptakis (2,6-di-o-methyl)-beta-CD (DM-beta-CD) as chiral selectors. Optimal separation was obtained using a running buffer of 50mM phosphate containing 30mM HP-beta-CD and 5mM DM-beta-CD at pH 2.90 and a field strength of 20kV in 45cmx75mum (40cm effective length) uncoated capillary. The UV absorbance detection was set at 205nm. A 0.1% (w/w) polyethylene glycol or 0.1% (v/v) acetonitrile was used to enhance the detection sensitivity. There was a wide and excellent linear calibration graph for each enantiomer in the range 1.0x10(-3) to 1.0x10(-6)M and the detection limit (S/N=3) was found from 8.5x10(-7) to 9.5x10(-7)M. The method has been applied for the determination of isoprenaline in isoprenaline hydrochloride aerosol and to the analysis of serum samples. The recoveries of NE and EP in serum and IP in drug were ranged from 90 to 110%. The relative standard deviations of all the analyte peaks were less than 2.8% for migration time and less than 4.8% for peak area.  相似文献   

15.
H C Tsai  C W Whang 《Electrophoresis》1999,20(12):2533-2538
A capillary electrophoresis (CE)/indirect chemiluminescence (CL) detection method is described for monoamines, viz., serotonin (5-HT), dopamine (DA), epinephrine (EP), and norepinephrine (NE) and for catechol (CA). Optimal separation and detection were obtained with an electrophoretic buffer of 10 mM sodium borate (pH 9.5) containing 5 mM luminol and 25 mM H2O2, and a catalyst solution of 30 microM CuSO4 in 30 mM borate buffer (pH 10.0). Complete separation of 5-HT, DA, EP, NE and CA was achieved in less than 5 min. The Cu(II)-catalyzed luminol CL reaction was employed to provide the high and constant background. Since monoamines and catechol can form stable complexes with Cu(II), inverted analyte peaks due to decreased catalytic activity of Cu(II) can be detected. The degree of CL suppression is proportional to the analyte concentrations. Linearity (r> or =20.99) over two orders of magnitude was generally obtained. The concentration limits of detection (CLODs) for the monoamines and catechol studied were between 0.5 and 3.1 uM. The relative standard deviation (RSD) values on peak size and migration time were in the ranges 3.2-4.4% and 0.4-0.5%, respectively. The applicability of the method for the analysis of pharmaceutical and biological samples was examined.  相似文献   

16.
A new and sensitive method for the determination of norepinephrine (NE), synephrine, and isoproterenol was developed by CE separation and indirect electrochemiluminescence detection (ECL) based on their quenching effects on the tris(2,2'-bipyridyl)-ruthenium(II)/tripropylamine (TPA) system. The conditions for CE separation and ECL detection were investigated in detail. Under the optimum conditions, the three analytes were well separated within 9 min. The LODs (S/N = 3) in standard solution are 2.6 x 10(-8) mol/L for NE, 6.6 x 10(-9) mol/L for synephrine and 8.4 x 10(-8) mol/L for isoproterenol, respectively. The precisions of intraday and interday are less than 4.4 and 6.1%, respectively. The LOQs (S/N = 10) in real human urine samples are 2.6 x 10(-7) mol/L for NE, 8.8 x 10(-8 ) mol/L for synephrine, and 8.8 x 10(-7) mol/L for isoproterenol, respectively. The applicability of the proposed method was illustrated in the determination of 20 human urine samples from diabetic patients and healthy persons. The results obtained indicated that the level of NE in patients (mean value 0.41 micromol/L) was higher than that in healthy persons (mean value 0.24 micromol/L).  相似文献   

17.
A simple and sensitive HPLC method for the determination of phenolic compounds, i.e., phenol (Phe), cresols (Cres) and xylenols (Xyls), was developed. After a pre-column fluorescence derivatization of these compounds with 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl) at 60 degrees C for 30 min, 11 DIB derivatives were successfully separated within 50 min with an ODS column using CH3CN-H2O-CH3OH (25 + 22 + 53, v/v) as the eluent. The detection limits of DIB derivatives at a signal-to-noise ratio of 3 ranged from 0.15 to 1.09 microM (0.2-1.6 pmol per 20 microliters). The precision of the proposed method for both within- and between-day assays of free and total phenol related compounds was satisfactory (RSD < 9.5%). By the proposed method, Phe and p-Cre could be detected in normal urine samples, and the calculated concentrations of free Phe and p-Cre in unhydrolysed urine samples were 1.5 +/- 1.3 and 23.9 +/- 24.3 microM and those of total Phe and p-Cre in hydrolysed urine samples were 87.3 +/- 81.2 and 200.7 +/- 195.4 microM (n = 21), respectively.  相似文献   

18.
Synthetic contraceptive levonorgestrel (LNG) and glucocorticoid methylprednisolone (MP) residues are eventually discarded to environmental water system and function as environmental hormones, displaying potential risk to humans and ecosystems, thus there is an urgent need for fast, sensitive and simultaneous detection of these compounds in water samples. In this study, a competitive immunochromatographic assay (ICA) using colloidal gold-labeled polyclonal antibodies as probes for rapid and simultaneous detection of LNG and MP in water samples was developed. The visual detection limits of LNG and MP in water samples were 10 ng/mL. The detection process could be completed within 10 min. There was no cross-reactivity of the ICA with other seven compounds. The strips could be stored at 4℃ for 10 weeks without significant loss of activity. The assay is a suitable tool for rapid and semiquantitative detection of LNG and MP in water samples on site.  相似文献   

19.
基于3种肾上腺素对三联吡啶钌-三丙胺发光体系具有强烈抑制的特性, 建立了一种毛细管电泳分离-间接电致化学发光(CE-IECL)灵敏检测NE、脱氧肾上腺素和异丙肾上腺素的新方法, 并将该方法成功地应用于人尿样分析. 结果表明, 糖尿病肾病患者尿样中的NE含量显著比健康人的高.  相似文献   

20.
A capillary electrophoresis (CE)/optical fiber light-emitting diode (LED)-induced fluorescence detection method is developed for the determination of agmatine in biological samples. The agmatine was precolumn-derivatized with fluorescence tagging reagent, fluorescein isothiocyanate (FITC). Optimal separation and determination for agmatine were obtained with an electrophoretic buffer of 20 mM sodium borate (pH 9.2). Under the optimal conditions, the determination of agmatine was achieved in less than 4 min, and the detection limit was 4.1x10(-9) M (S/N = 3). The relative standard deviation (RSD) for 11 parallel determination of agmatine was less than 3.0%. The present CE-LED induced fluorescence detection method has been applied to detect agmatine in rat brain tissue, rat stomach tissue, human serum, and human urine. The level of agmatine in human urine was quantified by CE for the first time and found to be in the range 2.5-4.1x10(-7) M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号