首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LetT be a nonexpansive mapping on a normed linear spaceX. We show that there exists a linear functional.f, ‖f‖=1, such that, for allxX, limn→x f(T n x/n)=limn→xT n x/n ‖=α, where α≡inf y∈c Ty-y‖. This means, ifX is reflexive, that there is a faceF of the ball of radius α to whichT n x/n converges weakly for allx (infz∈f g(T n x/n-z)→0, for every linear functionalg); ifX is strictly conves as well as reflexive, the convergence is to a point; and ifX satisfies the stronger condition that its dual has Fréchet differentiable norm then the convergence is strong. Furthermore, we show that each of the foregoing conditions on X is satisfied if and only if the associated convergence property holds for all nonexpansiveT. Supported by National Science Foundation Grant MCS-79-066.  相似文献   

2.
The two-dimensional classical Hardy space Hp(T×T) on the bidisc are introduced, and it is shown that the maximal operator of the (C,α,β) means of a distribution is bounded from the space Hp(T×T) to Lp(T2) (1/(α+1), 1/(β+1)<p≤∞), and is of weak type (H 1 # (T×T), L1(T2)), where the Hardy space H 1 # (T×T) is defined by the hybrid maximal function. As a consequence we obtain that the (C, α, β) means of a function f∈H 1 # (T×T)⊃LlogL(T 2) convergs a. e. to the function in question. Moreover, we prove that the (C, α, β) means are uniformly bounded on the spaces Hp(T×T) whenever 1/(α+1), 1(β+1)<p<∞. Thus, in case f∈Hp(T×T), the (C, α, β) means convergs to f in Hp(T×T) norm whenever (1/(α+1), 1/(β+1)<p<∞). The same results are proved for the conjugate (C, α, β) means, too. This research was made while the author was visiting the Humboldt University in Berlin supported by the Alexander von Humboldt Foundation.  相似文献   

3.
We study Karhunen-Loève expansions of the process(X t (α)) t∈[0,T) given by the stochastic differential equation $ dX_t^{(\alpha )} = - \frac{\alpha } {{T - t}}X_t^{(\alpha )} dt + dB_t ,t \in [0,T) $ dX_t^{(\alpha )} = - \frac{\alpha } {{T - t}}X_t^{(\alpha )} dt + dB_t ,t \in [0,T) , with the initial condition X 0(α) = 0, where α > 0, T ∈ (0, ∞), and (B t )t≥0 is a standard Wiener process. This process is called an α-Wiener bridge or a scaled Brownian bridge, and in the special case of α = 1 the usual Wiener bridge. We present weighted and unweighted Karhunen-Loève expansions of X (α). As applications, we calculate the Laplace transform and the distribution function of the L 2[0, T]-norm square of X (α) studying also its asymptotic behavior (large and small deviation).  相似文献   

4.
We prove a general theorem on the zeros of a class of generalised Dirichlet series. We quote the following results as samples. Theorem A.Let 0<θ<1/2and let {a n }be a sequence of complex numbers satisfying the inequality for N = 1,2,3,…,also for n = 1,2,3,…let α n be real andn| ≤ C(θ)where C(θ) > 0is a certain (small)constant depending only on θ. Then the number of zeros of the function in the rectangle (1/2-δ⩽σ⩽1/2+δ,Tt⩽2T) (where 0<δ<1/2)isC(θ,δ)T logT where C(θ,δ)is a positive constant independent of T provided TT 0(θ,δ)a large positive constant. Theorem B.In the above theorem we can relax the condition on a n to and |aN| ≤ (1/2-θ)-1.Then the lower bound for the number of zeros in (σ⩾1/3−δ,Tt⩽2T)is > C(θ,δ) Tlog T(log logT)-1.The upper bound for the number of zeros in σ⩾1/3+δ,Tt⩽2T) isO(T)provided for every ε > 0. Dedicated to the memory of Professor K G Ramanathan  相似文献   

5.
A mapT: X→X on a normed linear space is callednonexpansive if ‖Tx-Ty‖≤‖x-y‖∀x, yX. Let (Ω, Σ,P) be a probability space, an increasing chain of σ-fields spanning Σ,X a Banach space, andT: X→X. A sequence (xn) of strongly -measurable and stronglyP-integrable functions on Ω taking on values inX is called aT-martingale if . LetT: H→H be a nonexpansive mapping on a Hilbert spaceH and let (xn) be aT-martingale taking on values inH. If then x n /n converges a.e. LetT: X→X be a nonexpansive mapping on ap-uniformly smooth Banach spaceX, 1<p≤2, and let (xn) be aT-martingale (taking on values inX). If then there exists a continuous linear functionalf∈X * of norm 1 such that If, in addition, the spaceX is strictly convex, x n /n converges weakly; and if the norm ofX * is Fréchet differentiable (away from zero), x n /n converges strongly. This work was supported by National Science Foundation Grant MCS-82-02093  相似文献   

6.
The two-dimensional classical Hardy space Hp(T×T) on the bidisc are introduced, and it is shown that the maximal operator of the (C,α,β) means of a distribution is bounded from the space Hp(T×T) to Lp(T2) (1/(α+1), 1/(β+1)<p≤∞), and is of weak type (H 1 # (T×T), L1(T2)), where the Hardy space H 1 # (T×T) is defined by the hybrid maximal function. As a consequence we obtain that the (C, α, β) means of a function f∈H 1 # (T×T)⊃LlogL(T 2) convergs a. e. to the function in question. Moreover, we prove that the (C, α, β) means are uniformly bounded on the spaces Hp(T×T) whenever 1/(α+1), 1(β+1)<p<∞. Thus, in case f∈Hp(T×T), the (C, α, β) means convergs to f in Hp(T×T) norm whenever (1/(α+1), 1/(β+1)<p<∞). The same results are proved for the conjugate (C, α, β) means, too.  相似文献   

7.
LetX be a Borel subset of a separable Banach spaceE. Letμ be a non-atomic,σ-finite, Borel measure onX. LetGL 1 (X, Σ,μ) bem-dimensional. Theorem:There is an l ∈ E* and real numbers −∞=x 0<x 1<x 2<…<x n<x n+1=∞with nm, such that for all g ∈ G,   相似文献   

8.
LetX be a complex Banach space and letT be a bounded linear operator onX. Denote by σ p (T) the point spectrum ofT and by the unit circle. We investigate how the growth of the sequence ‖T n ‖ is influenced by the size of the set (T) and by the geometry of the spaceX. We also prove analogous results forC 0-semigroups(T t )t≥0. Research partially supported by grants from NSERC, FQRNT and the Canada research chairs program.  相似文献   

9.
10.
In this paper we study tree martingales and proved that if 1≤α,β〈∞,1≤p〈∞ then for every predictable tree martingale f=(ft,t∞T)and E[σ^(P)(f)]〈∞,E[S^(P)(f)]〈∞,it holds that ‖(St^(p)(f),t∈T)‖M^α∞≤Cαβ‖f‖p^αβ,‖(σt^(p)(f),t∈T)‖M^α,β‖f‖P^αβ,where Cαβ depends only on α and β.  相似文献   

11.
Letϕ: [0, 1]→R have continuous derivativeon the closed interval [0, 1], ∫ 0 1 ϕ(x)dx=0, and letα be irrational. Ifϕ(1) ≠ϕ(0), then (x, y) ↦ (x + α, y + ϕ (x)) is ergodic onR/Z ×R.  相似文献   

12.
We characterize the maximalm-bounded extension of an arbitrary completely regular Hausdorff spaceX. The other principal results are:Theorem. LetX be a locally compact, σ-compact non-compact space with no more than 2ℵ0 zero-sets. Then assuming the continuum hypothesis,βX − X can be written as the union of 22ℵ0 pairwise disjoint, dense ℵ0-bounded subspaces.Theorem. LetX be a locally compact, σ-compact metric space without isolated points. Then both the set of remote points ofβX and the complement of this set inβXX are ℵ0-bounded.  相似文献   

13.
For a given contractionT in a Banach spaceX and 0<α<1, we define the contractionT α j=1 a j T j , where {a j } are the coefficients in the power series expansion (1-t)α=1-Σ j=1 a j t j in the open unit disk, which satisfya j >0 anda j >0 and Σ j=1 a j =1. The operator calculus justifies the notation(I−T) α :=I−T α (e.g., (I−T 1/2)2=I−T). A vectory∈X is called an, α-fractional coboundary for T if there is anx∈X such that(I−T) α x=y, i.e.,y is a coboundary forT α . The fractional Poisson equation forT is the Poisson equation forT α . We show that if(I−T)X is not closed, then(I−T) α X strictly contains(I−T)X (but has the same closure). ForT mean ergodic, we obtain a series solution (converging in norm) to the fractional Poisson equation. We prove thaty∈X is an α-fractional coboundary if and only if Σ k=1 T k y/k 1-α converges in norm, and conclude that lim n ‖(1/n 1-α k=1 n T k y‖=0 for suchy. For a Dunford-Schwartz operatorT onL 1 of a probability space, we consider also a.e. convergence. We prove that iff∈(I−T) α L 1 for some 0<α<1, then the one-sided Hilbert transform Σ k=1 T k f/k converges a.e. For 1<p<∞, we prove that iff∈(I−T) α L p with α>1−1/p=1/q, then Σ k=1 T k f/k 1/p converges a.e., and thus (1/n 1/p ) Σ k=1 n T k f converges a.e. to zero. Whenf∈(I−T) 1/q L p (the case α=1/q), we prove that (1/n 1/p (logn)1/q k=1 n T k f converges a.e. to zero.  相似文献   

14.
In this paper we obtain a Douglas type factor decomposition theorem about certain important bounded module maps. Thus, we come to the discussion of the topological continuity of bounded generalized inverse module maps. Let X be a topological space, x →Tx : X→L(E) be a continuous map, and each R(Tx) be a closed submodule in E, for every fixed x C X. Then the map x→ Tx^+: X→L(E) is continuous if and only if ||Tx^+|| is locally bounded, where Tx^+ is the bounded generalized inverse module map of Tx. Furthermore, this is equivalent to the following statement: For each x0 in X, there exists a neighborhood ∪0 at x0 and a positive number λ such that (0, λ^2)lohtatn in ∩x∈∪0C/σ(Tx^+Tx), where a(T) denotes the spectrum of operator T.  相似文献   

15.
Let X:= (X jk ) denote a Hermitian random matrix with entries X jk which are independent for all 1 ≤ jk. We study the rate of convergence of the expected spectral distribution function of the matrix X to the semi-circular law under the conditions E X jk = 0, E X jk 2 = 1, and E|X jk |2+η M η < ∞, 0 < η ≤ 2. The bounds of order $ O(n^{ - \frac{\eta } {{2 + \eta }}} ) $ O(n^{ - \frac{\eta } {{2 + \eta }}} ) for 1 ≤ η ≤ 2, and those of order $ O(n^{ - \frac{{2\eta }} {{(2 + \eta )(3 - \eta )}}} ) $ O(n^{ - \frac{{2\eta }} {{(2 + \eta )(3 - \eta )}}} ) for 0 < η ≤ 1, are obtained.  相似文献   

16.
LetX be a Hausdorff zero-dimensional topological space,K(X) the algebra of all clopen subsets of X, E a Hausdorff locally convex space over a non-Archimedean valued field and C b (X) the space of all bounded continuous -valued functions on X. The space M(K(X),E), of all bounded finitely-additive measures m: K(X) → E, is investigated. If we equip C b (X) with the topologies β o , β, β u , τ b or β ob , it is shown that, for E (compete, the corresponding spaces of continuous linear operators from C b (X) to E (are algebraically isomorphic to certain subspaces of M(K(X),E). The text was submitted by the author in English.  相似文献   

17.
We study the problem on the completeness of orthogonal systems in asymmetric spaces with sign-sensitive weight. Theorems of general form are obtained. In particular, the necessary and sufficient conditions on α, β, q 1, and q 2 for which the known orthogonal systems are everywhere dense in asymmetric spaces L (α,β);q ([0, 1]) are found. Theorem. Let α, β, q 1, q 2 ∈ [1,+∞]. The following orthogonal systems are dense in asymmetric spaces L (α,β);q ([0, 1]) if and only if either max{α, β, q 1, q 2} < + ∞ or max {α, β} < +∞, q 1 = q 2 = +∞: trigonometric, algebraic, Haar’s system, Meyer’s system of wavelets, Shannon-Kotel’nikov wavelets, Stromberg and Lemarie-Battle wavelets, the Walsh system, and the Franklin system. __________ Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 24, Dynamical Systems and Optimization, 2005.  相似文献   

18.
Summary LetW(t) be a Wiener process. The lim inf behavior of theL 2-norm ofW(t) on the interval [T-a(T), T] and of |W(t+T)–W(t)| on the interval [T, T] is given under suitable conditions.Supported in part by NSF grant number DMS-8521586 and DMS-9024961  相似文献   

19.
Let X represent either the space C[-1,1] L p (α,β) (w), 1 ≦ p < ∞ on [-1, 1]. Then Xare Banach spaces under the sup or the p norms, respectively. We prove that there exists a normalized Banach subspace X 1 αβ of Xsuch that every f ∈ X 1 αβ can be represented by a linear combination of Jacobi polynomials to any degree of accuracy. Our method to prove such an approximation problem is Fourier–Jacobi analysis based on the convergence of Fourier–Jacobi expansions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
For given analytic functions ϕ(z) = z + Σ n=2 λ n z n , Ψ(z) = z + Σ n=2 μ with λ n ≥ 0, μ n ≥ 0, and λ n ≥ μ n and for α, β (0≤α<1, 0<β≤1), let E(φ,ψ; α, β) be of analytic functions ƒ(z) = z + Σ n=2 a n z n in U such that f(z)*ψ(z)≠0 and
for z∈U; here, * denotes the Hadamard product. Let T be the class of functions ƒ(z) = z - Σ n=2|a n | that are analytic and univalent in U, and let E T (φ,ψ;α,β)=E(φ,ψ;α,β)∩T. Coefficient estimates, extreme points, distortion properties, etc. are determined for the class E T (φ,ψ;α,β) in the case where the second coefficient is fixed. The results thus obtained, for particular choices of φ(z) and ψ(z), not only generalize various known results but also give rise to several new results. University of Bahrain, Isa Town, Bahrain. Published in Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 9, pp. 1162–1170, September, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号