首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generalized Poisson-Boltzmann equation which takes into account both ionic interaction in bulk solution and steric effects of adsorbed ions has been suggested. We found that, for inorganic cations adsorption on negatively charged surface, the steric effect is not significant for surface charge density <0.0032 C/dm2, while the ionic interaction is an important effect for electrolyte concentration >0.15 mol/l in bulk solution. We conclude that for most actual cases the original PB equation can give reliable result in describing inorganic cation adsorption.  相似文献   

2.
3.
The problem of charged polymer chains (polyelectrolytes) as they adsorb on a planar surface is addressed theoretically. We review the basic mechanisms and theory underlying polyelectrolyte adsorption on a single surface in two situations: adsorption of a single charged chain, and adsorption from a bulk solution in θ solvent conditions. The behavior of flexible and semi-rigid chains is discussed separately and is expressed as function of the polymer and surface charges, ionic strength of the solution and polymer bulk concentration. We mainly review mean-field results and briefly comment about fluctuation effects. The phenomenon of polyelectrolyte adsorption on a planar surface as presented here is of relevance to the stabilization of colloidal suspensions. In this respect we also mention calculations of the inter-plate force between two planar surfaces in presence of polyelectrolyte. Finally, we comment on the problem of charge overcompensation and its implication to multi-layers formation of alternating positive and negative polyelectrolytes on planar surfaces and colloidal particles.  相似文献   

4.
Standard models of the adsorption kinetics of surfactants at the air-water surface assume that micelles break down into monomers in the bulk solution and that only monomers adsorb. We show here that micelles of the nonionic surfactant C14E8 adsorb to the surface of a liquid jet at a diffusion-controlled rate. Micellar adsorption can be switched off by incorporation of a small amount of ionic surfactant into the micelle and switched on again by addition of salt. More sophisticated models of adsorption processes in micellar solutions are required that permit a kinetic flux of micelles to the air-water interface.  相似文献   

5.
Divalent metal cation adsorption from solution onto oxides or activated carbons can be described by the Surface Complexation Model (SCM). We assumed that the adsorbent surface is strongly energetically heterogeneous and derived the adsorption isotherm using rectangular distribution of adsorption energy and condensation approximation for the local isotherm equation. Assuming additionally that the bulk concentration of divalent metal ion is low and does not change considerably during the adsorption process and next applying the Statistical Rate Theory of Interfacial Transport (SRT) we derived the Elovich equation—the experimental formula describing adsorption kinetics.  相似文献   

6.
We present a scaling theory for the adsorption of a weakly charged polyelectrolyte chain in a poor solvent onto an oppositely charged surface. Depending on the fraction of charged monomers and on the solvent quality for uncharged monomers, the globule in the bulk of the solution has either a spherical conformation or a necklace structure. At sufficiently high surface charge density, a chain in the globular conformation adsorbs in a flat pancake conformation due to the Coulombic attraction to the oppositely charged surface. Different adsorption regimes are predicted depending on two screening lengths (the Debye screening length monitored by the salt concentration and the Gouy-Chapman length monitored by the surface charge density), on the degree of ionization of the polymer and on the solvent strength. At low bulk ionic strength, an increase in the surface charge density may induce a transition from an adsorbed necklace structure to a uniform pancake due to the enhanced screening of the intra-chain Coulombic repulsion by the counterions localized near the surface. Received 12 April 2001  相似文献   

7.
8.
We report results of our study on the surface-temperature dependence of the steric effect in the dissociative adsorption of NO on Si(111)-(7x7). Data presented here show that, at an incident energy of 58 meV, the reactive sticking probability for the N-end collision is larger than that for the O-end collision. Furthermore, this steric preference is quite sensitive to the surface temperature and the surface coverage. This study shows that the transient surface trapping into a shallow precursor well plays a key role in the stereodynamics of the dissociative adsorption at the low energy region.  相似文献   

9.
The adsorption isotherm of polyethyleneimine (PEI) on diatomite was studied using UV spectrophotometry, the surface of diatomite was modified with polyethyleneimine by using impregnation method, and the trapping behavior of the modified diatomite for phenol was investigated by using 4-aminoantipyrine (4-AAP) spectrophotometric method. The experiment results show that negatively charged diatomite particles have very strong absorption effect for cationic macromolecule PEI, the adsorption isotherm fits in Freundlich equation. The character that there is a maximum value after intitial sharp increase of adsorption capacity on the adsorption curve indicates that there is strong affinity between diatomite particles and polyethyleneimine macromolecules, and it attributes to the strong electrostatic interaction. After modification with PEI, the electric property of diatomite particle surface changes essentially, and the isoelectric point of diatomite particles moves from pH 2.0 to 10.5. In acidic solution, phenol exists as molecular state, and the modified diatomite particles adsorb phenol through hydrogen bond interaction. However, the hydrogen bond interaction between nitrogen atoms on PEI chains and phenol is weaker because of high degree of protonation of polyethyleneimine macromolecules, so the adsorption quantity is lower. In basic solution, phenol exists as negative benzene–oxygen ion, and the modified diatomite particles adsorb phenol through electrostatic interaction. However, the electrostatic interaction between PEI and negative benzene–oxygen ion is very weak because of low degree of protonation of polyethyleneimine macromolecules, so the adsorption quantity is much lower. The modified diatomite particles produce very strong trapping effect for phenol in neutral aqueous solution via the cooperating of strong electrostatic interaction and hydrogen bond interaction, and the saturated adsorption capacity can attain to 92 mg g−1.  相似文献   

10.
Two kinds of room‐temperature ionic liquids, 1‐butyl‐3‐methylimidazolium bromide ([BMIM]Br) and 1‐butyl‐3‐methylimidazolium tetrafluoroboride ([BMIM]BF4), were used as solvent, and the adsorption of the ionic liquids themselves and of N‐methylimidazole (NMIM) were investigated by electrochemical surface‐enhanced Raman scattering (SERS) over a wide potential window. The results revealed that the cation of ionic liquid adsorbed onto Cu surface with different configurations in different potential ranges. When the potential was changed from the negative to the positive range, the orientation underwent a change from flat to vertical, and the onset potential for the orientation change was dependent on the types of anion of the ionic liquid. The ionic liquid in bulk solution exhibited a remarkable effect on the adsorption of NMIM. The electrode surface structure changed from adsorbing the ionic liquid at the negative potential to coadsorbing the ionic liquid and NMIM at relative positive potential for the [BMIM]BF4 liquids, and formed films of NMIM at extremely positive potential. Due to the strong specific adsorption of Br, the coadsorption of ionic liquid and NMIM was not observed in the system [BMIM]Br. By simulating the electrode surroundings, two surface complexes [Cu(NMIM)4Br]Br·H2O and [Cu(NMIM)4](BF4)2 were synthesized by the electrochemical method in the corresponding ionic liquids for modeling the surface coordination chemistry of NMIM. The surface coordination configuration of NMIM and ionic liquids is proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The adsorption kinetics at the solid/solution interfaces has been described by using the kinetic model based on accepting the existence of the concentration gradient in the region of bulk solution close to the solid surface (external film-diffusion model). This model has also been adopted to explain some behaviours observed in the real adsorption systems. Simultaneously, the pseudo-first order (Lagergren) equation can be derived applying this model. The results indicate that the necessary condition to state that the “diffusion across the liquid film” mechanism is involved in controlling the rate of adsorption process is the linearity of the initial parts of kinetic isotherms plotted as the amount adsorbed vs. the time. The two methods have been proposed to distinguish between this mechanism and the classical Langmuir kinetics. The results presented here might be useful in identifying if the concentration gradient in the bulk solution influences the overall adsorption rate.  相似文献   

12.
In this work, an experimental study aimed at the assessment of the factors affecting the adsorption of trichloroethylene (TCE) from water solutions onto activated carbons is presented. The influence of sorbent properties, such as B.E.T. surface area, micropore volume, chemical composition and acid/basic surface functional groups on TCE adsorption capacity is experimentally assessed by testing a set of 12 sorbents. Moreover, the effect of the presence of other species in solution, such as sodium acetate and tetrachloroethylene (PCE), is studied through parametric TCE adsorption isotherms realization. The experimental results show that the TCE adsorption capacity is promoted by a high B.E.T. surface area, micropore volume and C content and it is significantly affected by the presence of a non-ionic compound of similar structure (PCE), however it does not depend on the presence of an organic salt (sodium acetate). These results confirm that neither TCE-carbon ionic interaction nor sorbent ionization phenomena are involved in the TCE adsorption, since its mechanism is based on dispersion forces (London-Van Der Walls interaction). A thorough analysis of the experimental data set suggests that, in consideration of the TCE adsorption mechanism, the maximization of basal plane extent (as the B.E.T. surface area) and its effective fraction (as the C content) is a valid criterion to select or synthesize a new suitable sorbent for TCE adsorption from waters.  相似文献   

13.
Nanostructures are presently enjoying an increasing interest in the field of materials science. In particular, importance is given to ordered monolayers prepared by deposition of atoms on a crystalline surface. The growth of these superlattices can be controlled so as to obtain an ordered structure by means of the lateral interaction of adatoms lying on the metal surface. The objective of our study is to investigate the structural and electronic properties using DFT total-energy calculations; we employ a jellium-like model to describe the substrate but we also take into account the presence of discrete surface states that are known to affect the lateral interaction. Our treatment of the substrate is based on the model proposed by E.V. Chulkov et al. [Surf. Sci. 437, 330 (1999)]; in this model one constructs a mono-dimensional potential so as to reproduce some important electronic properties of the metal surface, such as i) the energy gap in the projected bulk band-structure and ii) the energy position of surface states. We put into practice Chulkov potential implementing into an existing plane-waves code (ABINIT, URL http://www.abinit.org) an ionic potential, so as to obtain a self-consistent Kohn-Sham effective potential which corresponds to the Chulkov one. Using this effective potential in a fully three-dimensional code we are able to study the adsorption process and the interaction between adsorbates. We illustrate some details of our implementation of the Chulkov model and we present our results about the simple system of Na adatoms on a Cu(111) surface for different coverages. In particular, we compare electronic properties and adsorption energies with those obtained within a standard jellium model substrate and with those obtained for Na adsorption on a realistic Cu(111) surface.  相似文献   

14.
Guido Ori  F. Villemot  L. Viau  A. Vioux 《Molecular physics》2014,112(9-10):1350-1361
Molecular dynamics simulations in the isobaric–isothermal ensemble are used to investigate the structure and dynamics of an ionic liquid confined at ambient temperature and pressure in hydroxylated amorphous silica nanopores. The use of the isobaric–isothermal ensemble allows estimating the effect of confinement and surface chemistry on the density of the confined ionic liquid. The structure of the confined ionic liquid is investigated using density profiles and structural order parameters while its dynamics is assessed by determining the mobility and ionic conductivity of the confined phase. Despite the important screening of the electrostatic interactions (owing to the small Debye length in ionic liquids), the local structure of the confined ionic liquid is found to be mostly driven by electrostatic interactions. We show that both the structure and dynamics of the confined ionic liquid can be described as the sum of a surface contribution arising from the ions in contact with the surface and a bulk-like contribution arising from the ions located in the pore centre; as a result, most properties of the confined ionic liquid are a simple function of the surface-to-volume ratio of the host porous material. In contrast, the ionic conductivity of the confined ionic liquid, which is a collective dynamical property, is found to be similar to the bulk. This study sheds light on the complex behaviour of hybrid materials made up of ionic liquid confined in inorganic porous materials.  相似文献   

15.
Jee-Ching Wang   《Surface science》2003,540(2-3):326-336
We have studied the effects of surface step on molecular propane adsorption using molecular-dynamics simulations and a model stepped surface, Pt(6 5 5). Incidences along the step edge (smooth azimuth) and perpendicular to the step edge with upstairs momentum (upstairs azimuth) and downstairs momentum (downstairs azimuth) are considered. In general, the surface step enhances the initial trapping probability of propane except for the downstairs incidences. The most efficient zone in facilitating adsorption is near the bottom of the surface step on the lower terrace where incident molecules experience stronger attraction and an “additional-layer” effect when crossing the step. The least efficient zone is the top of the surface step on the upper terrace due to an opposite “missing-layer” effect. Surface step also creates steric effects such that more incident molecules along the upstairs azimuth but significantly less molecules along the downstairs azimuth impact the step-bottom zone. The latter steric effect, a shadowing effect, undermines the high trapping efficiency of the step-bottom zone to cause the downstairs incidences to have the lowest trapping probabilities. While the shadowing effect can be enhanced by larger incident angles and lower incident energies, the other steric effect on the upstairs incidences is relatively insensitive to the incident energy. Overall, the influence of surface step on molecular adsorption diminishes at low incident energies and large incident angles because longer contact times and less normal momenta result in high trapping probability across the entire stepped surface.  相似文献   

16.
The hydrogen adsorption on the PdTa alloy surface is studied using a pseudopotential method with a generalized gradient approximation for an exchange-correlation functional. The most preferable hydrogen adsorption sites on two low-index surfaces ((001), (110)) are determined. It is shown that hydrogen adsorption at the bridge site is preferred on the PdTa(001) surface that terminates by one or two tantalum layers and on PdTa(110). The preference of hydrogen adsorption at tantalum-rich sites is caused by partial population of its d shell. During adsorption, the electronic structure of the states involved in interaction with hydrogen is shown to change most substantially, which is accompanied by the corresponding shifts of these states and the appearance of peaks in the densities of states of the metal in the region of the hydrogen valence band. The effect of hydrogen on the electron and structural characteristics of the surfaces is analyzed. The hydrogen diffusion barriers are calculated in the bulk of the alloy and from the surface into the bulk.  相似文献   

17.
The adsorption of model charged proteins on charged surfaces with and without grafted polymers is studied using a molecular approach. The ability of the polymer layer to reduce the amount of proteins adsorbed on top of the surface (primary adsorption) and at the same time to increase the adsorption of the proteins on top of the polymer layer (secondary adsorption) is presented. It is found that charging the free ends of the chains can result in an efficient way to enhance adsorption at the tip of the brush. Increasing the surface coverage of the polymers with charged free ends enhances the amount of proteins adsorbed at the tip of the polymer layer, while at the same time strongly reduces the number of proteins adsorbed directly onto the surface. The interplay between the attractive van der Waals protein-surface interactions, the steric polymer-protein interactions and the effect of the electrostatic interactions in determining the final adsorption is discussed. The manipulation of solution conditions to tune the amount of secondary adsorption is presented.  相似文献   

18.
Results for the free-electron-like metal Al (rs = 2.07 bohr) are compared with previous Li (rs = 3.25 bohr) results. From an analysis of the various contributions to the total adsorption energy (steric interaction, σ-bonding, π-backbonding) as a function of the CO height above the surface, and the adsorption site, it appears that high conduction electron density leads to strong exchange repulsion. At the top site this effect is partly cancelled by the favourable interaction possibilities with Al 3p functions. The most striking differences with Li are thus the very weak adsorption at the hollow site, and stronger adsorption at the top site.  相似文献   

19.
We summarize three of our recent results on diffusion-influenced reactions in solutions. All deal with the concentration dependence of the reaction rate when the reactants must first diffuse together before reaction can occur. When one species (the sink species) is not dilute, the rate cannot be obtained by solution of a pair diffusion equation; the correlations among the sinks for the diffusing species must be accounted for. First, we consider fluorescence quenching when the quenchers are not dilute. For charged quenchers and fluorophores we discuss how the solution dielectric constant and ionic strength can strongly influence the deviations from the linear Stern-Volmer behavior (the dilute sink result) which arise due to the sink correlations. Second, we consider heterogeneous catalysis where a reactive species is adsorbed onto a surface and must surface diffuse to reactive sites (the sinks). We find that surface diffusion can be an important factor contributing to the rate of reaction; especially when surface diffusion is rapid relative to the adsorption/desorption rate. Third, we discuss diffusion influenced reactions with sinks which are long ellipsoids. Dilute long ellipsoids provide a large rate enhancement relative to a spherical sink; we show that this rate enhancement survives when nondilute ellipsoids are considered.  相似文献   

20.
Equations of a combined, liquid plus particle model are derived which accounts consistently for the short-range liquid properties of nuclei as well as for the long-range quasi-particle behavior. Macroscopic quantities are defined as statistical averages and their dynamics is determined by an Euler-type equation, which contains a term due to the interaction with the gas component, and also by the continuity equation. For the quasi-particle component the full quantal treatment is kept in the form of the Liouville equation with a time-dependent external potential related to the bulk density. It may include the residual quasi-particle interaction. It is suggested that the solution of the coupled dynamics is facilitated by the explicit use of an effective sharp nuclear surface as a dynamical variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号