首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the phenomenon of stochastic resonance (SR) in a periodically driven bistable system with correlations between multiplicative and additive white noise terms when there, are two different kinds of time delays existed in the deterministic and fluctuating forces, respectively. Using the small time delay approximation and the theory of signal-to-noise ratio (SNR) in the adiabatic limit, the expression of SNR is obtained. The effects of the delay time T in the deterministic force, and the delay time 8 in the fluctuating force on SNR are discussed. Based on the numerical computation, it is found that: (i) There appears a reentrant transition between one peak and two peaks and then to one peak again in the curve of SNR when the value of the time delay θ is increased. (ii) SR can be realized by tuning the time delay T or 8 with fixed noise, i.e., delay-induced stochastic resonance (DSR) exists.  相似文献   

2.
In this paper, we study the phenomenon of stochastic resonance (SR) in a periodically driven bistable system with correlations between multiplicative and additive white noise terms when there are two different kinds of time delays existed in the deterministic and fluctuating forces, respectively. Using the small time delay approximation and the theory of signal-to-noise ratio (SNR) in the adiabatic limit, the expression of SNR is obtained. The effects ofthe delay time τ in the deterministic force, and the delay time θ in the fluctuating force on SNR are discussed. Based on the numerical computation, it is found that: (i) There appears a reentrant transition between one peak and two peaks and then to one peak again in the curve of SNR when the value of the time delay θ is increased. (ii) SR can be realized by tuning thetime delay τ or θ with fixed noise, i.e., delay-inducedstochastic resonance (DSR) exists.  相似文献   

3.
It is shown that the single-step periodic signal (periodic telegraph signal) can not produce coherent stochastic resonance for diffusion on a segment with one absorbing and one reflecting end points while the multi-step periodic signal does. The general features of this process are exihibited. The resonant frequency is found to decrease and the mean first passage time at resonant frequency increases linearly, as we increase the length of the medium. The cycle variable is shown to be the proper argument to express the first passage probability at resonance. A formula for first passage probability at resonance is derived in terms of two universal functions, which clearly isolates its dependence on the length of the medium.  相似文献   

4.
Stochastic resonance (SR) phenomenon of the system that is subject to the asymmetric two-state noise is investigated from the broad sense. It is shown that the amplitudes of the output signal exhibit the non-monotonic dependence on the input signal frequency ω, and the parameters describing the asymmetric two-state noise, such as the transition rate λ, the order parameter k describing the asymmetric degree of the two-state noise, and the noise strength D.  相似文献   

5.
Stochastic resonance (SR) phenomenon of the system that is subject to the asymmetric two-state noise is investigated from the broad sense. It is shown that the amplitudes of the output signal exhibit the non-monotonic dependence on the input signal frequency w, and the parameters describing the asymmetric two-state noise, such as the transition rate A, the order parameter k describing the asymmetric degree of the two-state noise, and the noise strength D.  相似文献   

6.
In this paper, we obtain a 1+1 dimensional integrable differential-difference model for the sine-Gordon equation by Hirota's discretization method. A bilinear Backlund transformation and the associated Lax pair are also proposed/or this model.  相似文献   

7.
In this paper, we investigate a Josephson-junction device with dichotomous resistance or a special SQUID (superconducting quantum interference device). It is shown that frequency (stochastic) resonance and stochastic reso- nance can appear for some suitably selected parameters' values of the device respectively. Our results can provide some insights for the investigation of the SQUID response to the signal (including the input alternating current, the added al- ternating voltage, the vertically added alternating magnetic field, and the detected (electric-magnetic) temporal-periodic signal).  相似文献   

8.
The features of first passage time density function is analysed theoretically in a symmetric double square well system modulated periodically with a signal of arbitrary amplitude and frequency. Resonance is demonstrated as a maximum synchronization between periodic signal and noise. Resonance is characterized as a linear relation between noise strength at resonance and frequency. This characterization is shown to hold good for amplitude lesser or greater than the depth of the unmodulated potential well. The mean first passage time of the process at resonance is also shown to decrease linearly with the strength of the noise for high amplitude of the signal while it increases linearly with inverse of the noise strength for low amplitude.  相似文献   

9.
A single-mode laser noise model driven by quadratic colored pump noise and amplitude modulation signal is proposed. The real and imaginary parts of the pump noise are assumed to be cross-correlation. The effect of cross-correlation of noise and amplitude modulation of signal on laser statistical properties is studied by using the linearized approximation. The analytic expression of signal-to-noise ratio (SNR) is calculated. It is found that the phenomena of stochastic resonance (SR) respectively exist in the curves of the SNR versus the noise cross-correlation coefficient λ and the SNR versus the pump parameter a, as well as the SNR versus the signal frequency ω in our model. It is shown that there are three different typies of SR in the model: the conventional form of SR, the SR in the broad sense, and the bona fide SR.  相似文献   

10.
A protein motor system driven by sine electric field is investigated. The signal-to-noise ratio (SNR) is derived in the adiabatic limit. The phenomenon of stochastic resonance is found for this protein motor system.  相似文献   

11.
In this paper, we consider the phenomenon of stochastic resonance (SR) in a quartic bistable system under the simultaneous action of a multiplicative non-Gaussian and an additive Gaussian noises and a weak periodic signal. The expression of the signal-to-noise ratio R is derived by applying the two-state theory in adiabatic limit. We discuss the effects of the parameter q indicating the departure of the non-Gaussian noise from the Gaussian noise, the correlation time r of the non-Gaussian noise, and coupling intensity A between two noise terms on the stochastic resonance. It is found that the signM-to-noise ratio of the system, as a function of the additive noise intensity, undergoes the transition from having one peak to having two peaks, and then to having one peak again when the parameter q or the noise correlation time τ is increased. The parameter q and τ play opposite roles in the SR of the system.  相似文献   

12.
The phenomenon of stochastic resonance (SR) in an asymmetric mono-stable system subject to two external periodic forces and multiplicative and additive noise is investigated. It is shown that the signal-to-noise ratio (SNR) for the fundamental and higher harmonics is a non-monotonic function of the intensities of the multiplicative and additive noise, as well as of the system parameter. Moreover, the SNR for the fundamental harmonic decreases with the increase of the system asymmetry, while the SNR for the higher harmonics behaves non-monotonically as the system asymmetry varies.  相似文献   

13.
In this paper, we used time delay feedback to minimize the vibrations of a hybrid Rayleigh–van der Pol–Duffing oscillator. This system is a one-degree-offreedom containing the cubic and fifth nonlinear terms and an external force. We applied the multiple scales method to get the solution from first approximation. Graphically and numerically, we studied the system before and after adding time delay feedback at the primary resonance case (Ω ≌ ω). We used MATLAB program to simulate the efficacy of different parameters and the time delay on the main system.  相似文献   

14.
In the paper, we study a linear system driven by O-U noise and give a method which is different from the one stated in Europhys. Lett. 40 (1997) 117. We find the same phenomenon of multiplicative stochastic resonance for the response of the system to the signal as the one found in Europhys. Left. 40 (1997) 117. The merit of our method is that it prevents the complex formulas when making sum from n = 0 to n →∞ as in Europhys. Lett. 40 (1997) 117, which leads to the approximate results of the figures.  相似文献   

15.
16.
The stochastic resonance phenomenon in a bistable system subject to Markov dichotomous noise (DN) is investigated. Based on the adiabatic elimination and the two-state theories, the explicit expressions for the signal-tonoise ratio (SNR) and the spectral power amplification (SPA) have been obtained. It is shown that two peaks can occur on the curve of SNR versus the intensity of the DN. Moreover, the SNR is a non-monotonic function of the correlation time of the DN. The SPA varies non-monotonously with the strength of the DN. The dependence of the SNR on the frequency and the amplitude of the external periodic signal are discussed. The effect of the external frequency and the correlation time of the DN on the SPA are analyzed.  相似文献   

17.
A single-mode laser noise model driven by quadratic colored pump noise andbiased amplitude modulation signal is proposed. The analytic expression ofsignal-to-noise ratio is calculated by using a new linearized procedure. Itis found that there are three different typies of stochastic resonance inthe model: the conventional form of stochastic resonance, the stochasticresonance in the broad sense, and the bona fide SR.  相似文献   

18.
The phenomenon of stochastic resonance of a bistable system subjected to linear time-delayed feedback loops driven by multiplieative Gaussian coloured noise and additive Gaussian white noise is investigated. Firstly, the analytic expression of the quasi-steady distribution function Ps (x, t) is derived by applying the unified coloured noise approximation and the Novikov Theorem; Secondly, the expression of the signal-to-noise ratio (SNR) is obtained in the adiabatic limit to quantify the stochastic resonance. Finally, tile effects of the linear coefficient a, the nonlinear coefficient b, the linear time-delayed feedback coefficient c and the delay time r on Ps(x,t) and SNR^± are discussed. It is found that the effects of the linear coefficient and the nonlinear coefficient, the positive linear time-delayed feedback coefficient and the negative linear time-delayed feedback coefficient, the positive delayed time and the negative delayed time on Ps(x,t) and SNR^± are different, respectively. This discussion would be helpful to the study of the system reliability and controlling stochastic resonance.  相似文献   

19.
The stochastic resonance phenomenon in a bistable system subject to Markov dichotomous noise (DN) is investigated. Based on the adiabatic elimination and the two-state theories, the explicit expressions for the signal-to-noise ratio (SNR) and the spectral power amplification (SPA) have been obtained. It is shown that two peaks can occur on the curve of SNR versus the intensity of the DN. Moreover, the SNR is a non-monotonic function of the correlation time of the DN. The SPA varies non-monotonously with the strength of the DN. The dependence of the SNR on the frequency and the amplitude of the external periodic signal are discussed. The effect of the external frequency and the correlation time of the DN on the SPA are analyzed.  相似文献   

20.
An externally excited Duffing oscillator under feedback control is discussed and analyzed under the worst resonance case. Multiple time scales method is applied for this system to find analytic solution with the existence and nonexistence of the time delay on control loop. An appropriate stability analysis is also performed and appropriate choices for the feedback gains and the time delay are found in order to reduce the amplitude peak. Different response curves are involved to show and compare controller effects. In addition, analytic solutions are compared with numerical approximation solutions using Rung-Kutta method of fourth order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号