首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 990 毫秒
1.
In this paper,we have investigated the quantum entanglement of quantum states undergoing decoherence from a spin environment which drives a quantum phase transition.From our analysis,we find that the entanglement dynamics depends not only on the coupling strength but also on the external magnetic field and the number of the freedom degrees of the environment.Specially,our results imply that the decay of the entanglement can be enhanced by the quantum phase transition of the environment when the system is coupled to the environment weakly.Additionally,the discussion of the case of the multipartite states with high dimensions is made.  相似文献   

2.
In this paper, we have investigated the quantum entanglement of quantum states undergoing decoherence from a spin environment which drives a quantum phase transition. From our analysis, we find that the entanglement dynamics depends not only on the coupling strength but also on the external magnetic field and the number of the freedom degrees of the environment. Specially, our results imply that the decay of the entanglement can be enhanced by the quantum phase transition of the environment when the system is coupled to the environment weakly. Additionally, the discussion of the case of the multipartite states with high dimensions is made.  相似文献   

3.
We study theoretically the geometric phase of a double-quantum-dot(DQD) system measured by a quantum point contact(QPC) in the pure dephasing and dissipative environments, respectively. The results show that in these two environments, the coupling strength between the quantum dots has an enhanced impact on the geometric phase during a quasiperiod. This is due to the fact that the expansion of the width of the tunneling channel connecting the two quantum dots accelerates the oscillations of the electron between the quantum dots and makes the length of the evolution path longer.In addition, there is a notable near-zero region in the geometric phase because the stronger coupling between the system and the QPC freezes the electron in one quantum dot and the solid angle enclosed by the evolution path is approximately zero,which is associated with the quantum Zeno effect. For the pure dephasing environment, the geometric phase is suppressed as the dephasing rate increases which is caused only by the phase damping of the system. In the dissipative environment,the geometric phase is reduced with the increase of the relaxation rate which results from both the energy dissipation and phase damping of the system. Our results are helpful for using the geometric phase to construct the fault-tolerant quantum devices based on quantum dot systems in quantum information.  相似文献   

4.
Hyper-parallel quantum information processing is a promising and beneficial research field. Herein, a method to implement a hyper-parallel controlled-phase-flip (hyper-CPF) gate for frequency-, spatial-, and time-bin-encoded qubits by coupling flying photons to trapped nitrogen vacancy (NV) defect centers is presented. The scheme, which differs from their conventional parallel counterparts, is specifically advantageous in decreasing against the dissipate noise, increasing the quantum channel capacity, and reducing the quantum resource overhead. The gate qubits with frequency, spatial, and time-bin degrees of freedom (DOF) are immune to quantum decoherence in optical fibers, whereas the polarization photons are easily disturbed by the ambient noise.  相似文献   

5.
《Physica A》1995,214(4):560-583
We discuss quantum decoherence in an open system which couples with a non-linear environment with finite degrees of freedom. Even if the degrees of freedom of the environment are finite, the strong non-linearity of the environment is expected to destroy quantum coherence of the open system like a heat bath with infinite degrees of freedom. In order to demonstrate this fact, we use two-dimensional kicked rotors as the environment and investigate a master equation for a reduced density matrix which is obtained by coarse-graining the environmental degrees of freedom. Our numerical simulation shows that when the non-linearity of the environment exceeds a critical strength, quantum coherence of the open system is irreversibly destroyed. This decoherence is due to the uncorrelated response of the environment to the open system and is related to the chaotic property of the non-linear environment.  相似文献   

6.
Evolution speed of an open quantum system is vividly influenced by the structure of environments. The strong system‐environment coupling is found to be able to accelerate quantum evolution. In this work, we propose a different method of governing the quantum speedup via engineering multiple environments. It is shown that, with a judicious choice of the number of coupling environments, the quantum speedup of an open system can be achieved even under weak system‐environment coupling conditions. The mechanism for the speedup is due to the switch between Markovian and non‐Markovian regions by manipulating the number of the surrounding environments. In addition, we verify the above phenomena by using quantum dots embedded in a planar photonic crystal under current technologies. These results provide a new degree of freedoms to accelerate quantum evolution of open systems. The strong system‐environment coupling can speed up the quantum evolution process. This work shows that, via engineering multiple environments, one can speed up the evolution process even under weak coupling conditions.  相似文献   

7.
Without access to the full quantum state, modeling quantum transport in mesoscopic systems requires dealing with a limited number of degrees of freedom. In this work, we analyze the possibility of modeling the perturbation induced by non-simulated degrees of freedom on the simulated ones as a transition between single-particle pure states. First, we show that Bohmian conditional wave functions (BCWFs) allow for a rigorous discussion of the dynamics of electrons inside open quantum systems in terms of single-particle time-dependent pure states, either under Markovian or non-Markovian conditions. Second, we discuss the practical application of the method for modeling light–matter interaction phenomena in a resonant tunneling device, where a single photon interacts with a single electron. Third, we emphasize the importance of interpreting such a scattering mechanism as a transition between initial and final single-particle BCWF with well-defined central energies (rather than with well-defined central momenta).  相似文献   

8.
Zhenyu Lin 《中国物理 B》2022,31(7):70307-070307
The quantum speed limit (QSL) of the double quantum dot (DQD) system has been theoretically investigated by adopting the detection of the quantum point contact (QPC) in the pure dephasing environment. The Mandelstam-Tamm (MT) type of the QSL bound which is based on the trace distance has been extended to the DQD system for calculating the shortest evolving time. The increase of decoherence rate can weaken the capacity for potential speedup (CPS) and delay the evolving process due to the frequently measurement localizing the electron in the DQD system. The system needs longer time to evolve to the target state as the enhancement of dephasing rate, because the strong interaction between pure dephasing environment and the DQD system could vary the oscillation of the electron. Increasing the dephasing rate can sharp the QSL bound, but the decoherence rate would weaken the former effect and vice versa. Moreover, the CPS would be raised by increasing the energy displacement, while the enhancement of the coupling strength between two quantum dots can diminish it. It is interesting that there has an inflection point, when the coupling strength is less than the value of the point, the increasing effect of the CPS from the energy displacement is dominant, otherwise the decreasing tendency of the CPS is determined by the coupling strength and suppress the action of the energy displacement if the coupling strength is greater than the point. Our results provide theoretical reference for studying the QSL time in a semiconductor device affected by numerous factors.  相似文献   

9.
Huan Yang 《中国物理 B》2022,31(9):90302-090302
The important applications of quantum dot system are to implement logic operations and achieve universal quantum computing based on different quantum nonlocalities. Here, we characterize the quantum steering, Bell nonlocality, and nonlocal advantage of quantum coherence (NAQC) of quantum dot system suffering nonunital and unital channels. The results reveal that quantum steering, Bell nonlocality, and NAQC can display the traits of dissipation, enhancement, and freezing. One can achieve the detections of quantum steering, Bell nonlocality, and NAQC of quantum dot system in different situations. Among these quantum nonlocalities, NAQC is the most fragile, and it is most easily influenced by different system parameters. Furthermore, considering quantum dot system coupling with amplitude damping channel and phase damping channel, these quantum nonlocalities degenerate with the enlargement of the channel parameters $t$ and $\varGamma$. Remarkably, measurement reversal can effectively control and enhance quantum steering, Bell nonlocality, and NAQC of quantum dot system suffering from decoherence, especially in the scenarios of the amplitude damping channel and strong operation strength.  相似文献   

10.
顾斌  黄余改  方夏  张成义 《中国物理 B》2011,20(10):100309-100309
We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.  相似文献   

11.
姜伟  于扬  韦联福 《中国物理 B》2011,20(8):80307-080307
We theoretically study the quantum nondemolition measurements of a flux qubit coupled to a noisy superconduct-ing quantum interference device (SQUID).The obtained analytical results indicate that the measurement probability is frequency-dependent in a short time scale and has a close relationship with the measurement-induced dephasing.Furthermore,when the detuning between the driven and bare resonator equals the coupling strength,we can obtain the maximum measurement rate that is determined by the character of the noise in the SQUID.Finally,we analysed the mixed effect caused by coupling between the non-diagonal term and the external variable.It is found that the initial information of the qubit is destroyed due to quantum tunneling between the qubit states.  相似文献   

12.
Quantum groups play the role of symmetries of integrable theories in two dimensions. They may be detected on the classical level as Poisson-Lie symmetries of the corresponding phase spaces. We discuss specifically the Wess-Zumino-Witten conformally invariant quantum field model combining two chiral parts which describe the left- and right-moving degrees of freedom. On one hand, the quantum group plays the role of the symmetry of the chiral components of the theory. On the other hand, the model admits a lattice regularization (in Minkowski space) in which the current algebra symmetry of the theory also becomes quantum, providing the simplest example of a quantum group symmetry coupling space-time and internal degrees of freedom. We develop a free field approach to the representation theory of the lattice sl (2)-based current algebra and show how to use it to rigorously construct an exact solution of the quantum SL (2) WZW model on lattice.  相似文献   

13.
Isotope effects in diffusion of hydrogen atoms are investigated theoretically. It is shown that isotope effect is reduced by a nonadiabatic effect of the heat bath so that the classical‐quantum crossover temperature and quantum tunneling rate lose their mass dependence. On the other hand, isotope effect is reversed in classical hopping rate under strong spatial confinement at the barrier top. These results indicate that isotope effects can be the means of observing influences of many degrees of freedom characterizing environment in diffusion process. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
赵瑞通  梁瑞生  王发强 《物理学报》2017,66(24):240301-240301
量子纠缠浓缩可以将非最大的纠缠态转变为最大纠缠态,提高量子通信的安全性.本文基于圆偏振光和量子点-腔系统的相互作用,用一个单光子作为连接远距离纠缠光子对的桥梁,在理想条件下实现了光子偏振纠缠态的浓缩.计算结果显示,这个纠缠浓缩方案在考虑耦合强度和腔泄漏的情况下也可以保持较高的保真度,而且不需要知道部分纠缠态的初始信息,也不必重复执行纠缠浓缩过程.这不仅提高了量子纠缠浓缩的安全性,也有助于通过消耗最少的量子资源来实现高效的量子信息处理.  相似文献   

15.
The primary resource for quantum computation is Hilbert-space dimension. Whereas Hilbert space itself is an abstract construction, the number of dimensions available to a system is a physical quantity that requires physical resources. Avoiding a demand for an exponential amount of these resources places a fundamental constraint on the systems that are suitable for scalable quantum computation. To be scalable, the effective number of degrees of freedom in the computer must grow nearly linearly with the number of qubits in an equivalent qubit-based quantum computer.  相似文献   

16.
We show that the vibrations of a nanomechanical resonator can be cooled to near its quantum ground state by tunneling injection of electrons from a scanning tunneling microscope tip. The interplay between two mechanisms for coupling the electronic and mechanical degrees of freedom results in a bias-voltage-dependent difference between the probability amplitudes for vibron emission and absorption during tunneling. For a bias voltage just below the Coulomb blockade threshold, we find that absorption dominates, which leads to cooling corresponding to an average vibron population of the fundamental bending mode of 0.2.  相似文献   

17.
Abstract

On-chip integrated photonic circuits are crucial for further progress toward quantum technologies and in the science of quantum optics. The quantum controlled-Z gate is an example of the maximally entangling gate, which is universal for quantum computing when coupled with single-qubit gates. This article demonstrates a deterministic controlled-Z photonic quantum gate based on titanium in-diffused channel waveguides in which polarization and modal degrees of freedom of a single photon are used for encoding the control and target qubits, respectively.  相似文献   

18.
Wen-Li Yu 《中国物理 B》2023,32(1):10302-010302
An open quantum battery (QB) model of a single qubit system charging in a coherent auxiliary bath (CAB) consisting of a series of independent coherent ancillae is considered. According to the collision charging protocol we derive a quantum master equation and obtain the analytical solution of QB in a steady state. We find that the full charging capacity (or the maximal extractable work (MEW)) of QB, in the weak QB-ancilla coupling limit, is positively correlated with the coherence magnitude of ancilla. Combining with the numerical simulations we compare with the charging properties of QB at finite coupling strength, such as the MEW, average charging power and the charging efficiency, when considering the bath to be a thermal auxiliary bath (TAB) and a CAB, respectively. We find that when the QB with CAB, in the weak coupling regime, is in fully charging, both its capacity and charging efficiency can go beyond its classical counterpart, and they increase with the increase of coherence magnitude of ancilla. In addition, the MEW of QB in the regime of relative strong coupling and strong coherent magnitude shows the oscillatory behavior with the charging time increasing, and the first peak value can even be larger than the full charging MEW of QB. This also leads to a much larger average charging power than that of QB with TAB in a short-time charging process. These features suggest that with the help of quantum coherence of CAB it becomes feasible to switch the charging schemes between the long-time slow charging protocol with large capacity and high efficiency and the short-time rapid charging protocol with highly charging power only by adjusting the coupling strength of QB-ancilla. This work clearly demonstrates that the quantum coherence of bath can not only serve as the role of "fuel" of QB to be utilized to improve the QB's charging performance but also provide an alternative way to integrate the different charging protocols into a single QB.  相似文献   

19.
考虑半导体量子点间隧穿耦合效应,研究非对称半导体三量子点分子中的弱探测光的传播特性。线性情况下,由于点间隧穿耦合和外部控制光的协同调控,探测光的吸收特性将出现共振吸收、隧穿诱导透明单窗口、隧穿诱导透明双窗口及隧穿诱导透明三窗口的转变。此外,从反常色散到正常色散的开关效应可通过改变隧穿强度及光学控制场强度来实现。对于非线性情况,发现孤子的振幅随着点间隧穿耦合系数增大呈先增大再减小随即再次增大并减小的波动变化趋势且出现最大振幅及其对应的点间隧穿耦合强度随着外部控制光场的增大而减小。此外,发现孤子的群速度随着耦合强度的增加呈逐渐减小的趋势。  相似文献   

20.
Dimensionality is a central concept in developing the theory of low-dimensional physics.However,previous research on dimensional crossover in the context of a Bose-Einstein condensate(BEC) has focused on the single-component BEC.To our best knowledge,further consideration of the two-component internal degrees of freedom on the effects of dimensional crossover is still lacking.In this work,we are motivated to investigate the dimensional crossover in a three-dimensional(3D) Rabi-coupled two-compon...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号