首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reports the analysis of selected aldehydes in air samples using capillary electrophoresis (CE). The method is based on the reaction of aldehydes with 4-hydrazinobenzoic acid (HBA) to give the corresponding hydrazones with maximum absorbance at 290 nm. Under optimized CE conditions, the HBA derivatives of four carbonyls (formaldehyde, acetaldehyde, propionaldehyde, and acrolein) were completely separated from one another, in less than 6 min, using a pH 9.3 tetraborate buffer at 0.040 mol L(-1) concentration as background electrolyte. A few method validation parameters were determined revealing good migration time repeatability (< 1.5% CV) and area repeatability (< 2% CV), excellent linearity (50-300 microg/L, r > 0.996) and adequate sensitivity for environmental applications. The limits of detection with respect to each single aldehyde were in the range of 2.7-8.8 ng L(-1). The methodology was applied to the determination of aldehydes indoors. Samples were collected in HBA impregnated octadecylsilica cartridges, at different times during the day. The most abundant carbonyls in the samples were acetaldehyde followed by formaldehyde, with estimated peak concentrations of 4.3 and 2.9 ppbv, respectively.  相似文献   

2.
Summary The exhaust gas of a LPG fuelled engine is drawn through two bubblers in series in an ice bath, and filled with saturated 2,4-dinitrophenylhydrazine in 2M HCl. After heating the derivatives are extracted with toluene-cyclohexane and 1l samples injected on-column on a OV1 capillary column. Using an FID the lower limit of detection is 15–18 pg for formaldehyde (about 8–10 ppbv for a 16l exhaust sample). Taking the blank into account, the limit is about 40 ppbv.The exhaust gases of a LPG-fuelled engine contain formaldehyde, acetaldehyde, propionaldehyde, acrolein and acetone. Carbonyl compounds of more than 3 C-atoms were not found in detectable amounts. The engine was rund under stoichiometric, lean and rich air/fuel conditions. Under rich conditions the concentrations of the aldehydes were: formaldehyde 2.8 ppm, acetaldehyde 1.3 ppm, propionaldehyde 0.06 ppm, acrolein 0.03 ppm, acetone 0.17 ppm; under stoichiometric conditions: 4.5, 1.6, 0.10, 0.03 and 0.18 ppm respectively; under lean conditions 17.0, 2.9, 0.13, 0.07 and 0.27 ppm respectively. These figures demonstrate the necessity of measuring aldehydes in exhaust gases of LPG-fuelled engines.  相似文献   

3.
Formaldehyde and acetaldehyde in water were determined by preconcentration with poly(allylamine) beads, derivatization with 2,4-dinitrophenylhydrazine (DPH) and analysis by HPLC. Poly(allylamine) beads (0.5 g) were used to adsorb formaldehyde and acetaldehyde at 1.2-150 microg l(-1) and 3.5-220 microg l(-1) from water (1 l). The concentration factor is 50 fold. The aldehydes were eluted and derivatized with 2 mM DPH in 0.5 M H2SO4 (10 ml). The time of analysis was 1 h. The detection limits (S/N=3) for formaldehyde and acetaldehyde were 0.6 and 2 microg l(-1), respectively.  相似文献   

4.
This work describes a novel approach for the analysis of selected aldehydes (formaldehyde, acetaldehyde, propionaldehyde, and acrolein) and acetone in environmental samples using micellar electrokinetic chromatography (MEKC). The method is based on the reaction of carbonyl compounds with 3-methyl-2-benzothiazoline hydrazone (MBTH) that gives an azine intermediate with maximum absorbance at 216 nm. A systematic evaluation of sample dissolution medium was conducted as a means to enhancing sensitivity. In the best condition, samples were dissolved in 0.030 mol.L(-1) tetraborate solution. This condition presented enhancement factors in the range of 35-54 for the aldehydes under investigation, computed as the improvement of the concentration limits of detection (LODs) with reference to the sample dissolved in pure water. The running buffer was 0.020 mol.L(-1) tetraborate, pH 9.3, containing 0.050 mol.L(-1) sodium dodecyly sulfate (SDS). The overall methodology presented several advantages over established methods for aldehydes. Worthy mentioning that MBTH is available in high purity degree, dispensing laborious reagent purification procedures. A few method validation parameters were determined revealing good migration time repeatability (< 2.5% coefficient of variation, CV) and area repeatability (< 4% CV), excellent linearity (20-120 micro g/L, r > 0.995) and adequate sensitivity for environmental applications. The LODs with respect to each single aldehyde were in the range of 0.54-4.0 micro g.L(-1) and 11 micro g.L(-1) for acetone. The methodology was applied to the determination of aldehydes indoors. Samples were collected in an impinger flask containing 0.05% MBTH solution, at a flow rate of 0.80 L.min(-1), during 2.5 h, at different times during the day. The most abundant carbonyls in the samples were acetone, followed by formaldehyde and acetaldehyde, with estimate peak concentrations of 452, 5.2 and 2.2 ppbv, respectively.  相似文献   

5.
An electrochemical detection method for short-chain saturated and unsaturated aliphatic aldehydes separated by liquid chromatography in moderately acidic medium is described. A triple-step waveform of the potentials applied to the polycrystalline platinum electrode, is proposed for sensitive detection of aliphatic aldehydes in flowing streams avoiding tedious pre- or post-column derivatization and/or cleanup procedures. The influences of the perchloric acid concentration and dissolved oxygen in the mobile phase, on the amperometric and chromatographic performance were evaluated and considered in terms of sensitivity and selectivity. Under the optimised experimental conditions (i.e., deoxygenated 50mM HClO4) the proposed analytical method allowed detection limits between 0.2 microM for acrolein and 2.5 microM for valeraldehyde. Regression analysis of calibration data indicates that responses for all investigated compounds are linear over about 2 orders of magnitude above the LOD, with correlation coefficients >0.990. The method was successfully applied to the determination of formaldehyde, acetaldehyde, propionaldehyde and acrolein in real matrices such as spiked water and red wines with good mean recoveries (81-97%).  相似文献   

6.
Carbonyl compounds (aldehydes and ketones) are suspected to be among the chemical compounds responsible for Sick Building Syndrome and Multiple Chemical Sensitivities. A headspace gas chromatography/mass spectrometry (GC/MS) analysis for these compounds was developed using derivatization of the compounds into volatile derivatives with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBOA). For GC/MS detection, two ionization modes including electron impact ionization (EI) and negative chemical ionization (NCI) were compared. The NCI mode seemed to be better because of its higher selectivity and sensitivity. This headspace GC/MS (NCI mode) was employed as analysis for aldehydes and ketones in materials (fiber products, adhesives, and printed materials). Formaldehyde was detected in the range of N.D. (not detected) to 39 microg/g; acetaldehyde, N.D. to 4.1 microg/g; propionaldehyde, N.D. to 1.0 microg/g; n-butyraldehyde, N.D. to 0.10 microg/g; and acetone, N.D. to 3.1 microg/g in the samples analyzed.  相似文献   

7.
Determination of carbonyl compounds in air by electrochromatography   总被引:5,自引:0,他引:5  
Fung YS  Long Y 《Electrophoresis》2001,22(11):2270-2277
A new analytical procedure based on electrochromatography was developed for the separation and quantitation of 14 aldehydes and ketones (formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde, butanone, crotonaldehyde, isobutyraldehyde/butyraldehyde, 2-pentenaldehyde, isovaleraldehyde, valeraldehyde, benzaldehyde and hexanaldehyde) in ambient air currently to be regulated by the Hong Kong Environmental Protection Department. A volatile mobile phase using ammonium acetate compatible with mass spectrometry detection was developed and optimized as follows. Methanol: acetonitrile: aqueous buffer (4 mM ammonium acetate) = 65:5:30% v/v. With electrokinetic injection at 5 kV for 2 s, aqueous buffer pH adjusted to 8, applied voltage controlled at 25 kV, and detection at 360 nm in a fused-silica column packed with 3 microm ODS, a satisfactory separation was obtained for the 14 carbonyl compounds investigated. The working ranges in acetonitrile solution were found to vary from 0.25 to 79 mg/L with a correlation coefficient greater than 0.99, detection limits from 0.10 to 0.63 mg/L, and precision (relative standard deviation, n = 3) from 2.3 to 9.2%. Under an air flow rate of 0.3 L/min for a sampling time of 1 h, the working ranges varied from 0.030 to 11,000 microg/m3 and detection limits from 0.011 to 0.084 microg/ m3. The method has been successfully applied to monitor three carbonyl compounds in four urban and rural sites in Hong Kong and gave hourly readings of three carbonyl compounds for all the sites investigated with a separation time less than 25 min.  相似文献   

8.
HPLC–UV and GC/MS determination of aldehydes in bio-oil were evaluated. HPLC–UV preceded by derivatization with 2,4-dinitrophenylhydrazine allows separation and detection of bio-oil aldehydes, but the derivatization affected the bio-oil stability reducing their quantitative applicability. GC/MS determination of aldehydes was reached by derivatization with o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride. Two approaches for this reaction were evaluated. The first: “in solution derivatization and head space extraction” and the second: “on fiber derivatization SPME”, the latter through an automatic procedure. Both sample treatments allows the quantification of most important aliphatic aldehydes in bio-oil, being the SPME approach more efficient. The aldehyde concentrations in bio-oil were ~2% formaldehyde, ~0.1% acetaldehyde and ~0.05% propionaldehyde.  相似文献   

9.
Within the framework of a European interlaboratory exercise, the Vito facility for the generation of controlled atmospheres was used to test the suitability of four sampling techniques for priority aldehydes namely formaldehyde, acrolein, acetaldehyde, and glutaraldehyde at the ranges of 0.5 to 150 microg x m(-3). The samplers are DNPH-containing impingers, DNPH-impregnated cartridges and filters, and 2-HMP coated XAD-2 tubes. The three first DNPH samplers are to be analyzed by HPLC and the latter by GC-MS for the oxazolidine derivatives. The intermethod comparison comprises two to five sets of experiments depending on the compounds of interest. The aim of the exercise was also to assess the chemical interferences caused by ozone, nitrogen dioxide, and ammonia when using different techniques for sampling and analysis. The active DNPH method (with minor modifications such as shorter sampling time, immediate elution after sampling, and/or eventually wetting of samplers) delivered results within the 30% overall relative uncertainty for formaldehyde, acetaldehyde, and acrolein at the upper microg x m(-3) levels. However, the results suggest that the current DNPH methods for aldehydes do not comply with the 30% minimum performance criteria at the sub microg x m(-3) level. Sampling of aldehydes in the presence of ozone and NO2 interferences by using a "scrubber" cartridge appears to be beneficial to the quality of results.  相似文献   

10.
In this study, an effort was made to apply gas chromatography (GC) with a flame ionization detector (FID) to the determination of gaseous carbonyls (without derivatization) at sub ppb level. A GC system interfaced with a multi-function thermal desorber system (TD) was hence tested for the collection and analysis of gaseous carbonyls. During this study, the calibration properties of five carbonyl compounds - acetaldehyde, propionaldehyde, butyraldehyde, isovaleraldehyde, and valeraldehyde - were evaluated by varying the operation conditions of the TD system (i.e., sample transfer approaches and sorbent types of cold trap). The results were generally discernible between compounds (light and heavy carbonyls) and/or between selected concentration levels. Most interestingly, the GC detection properties of the lighter aldehydes (acetaldehyde and propionaldehyde) varied significantly, as they were sensitively affected by the types of cold trap combination. However, the heavier aldehydes - butyraldehyde, isovaleraldehyde, and valeraldehyde - maintained highly constant trends for GC calibration. According to this study, a GC-based quantification of aldehydes can be completed by an optimized setup of TD system.  相似文献   

11.
A highly sensitive, simple and selective kinetic method was developed for the determination of ultra-trace levels of formaldehyde and acetaldehyde based on their catalytic effect on the oxidation of N,N-diethyl-p-phenylenediamine (DPD) with hydrogen peroxide. The reaction was monitored spectrophotometrically by tracing the formation of the red-colored oxidized product of DPD at 510nm, within 30s of mixing the reagents. The optimum reaction conditions were: 20mmolL(-1) DPD, 250mmolL(-1) H(2)O(2), 150mmolL(-1) phosphate, 150mmolL(-1) citrate and pH 6.60+/-0.05 at 25 degrees C. Following the recommended procedure, formaldehyde and acetaldehyde could be determined with linear calibration graphs up to 0.50 and 1.4microg mL(-1) and detection limits, based on the 3S(b)-criterion, of 0.015 and 0.035microg mL(-1), respectively. In addition, analytical data for other 10 aldehydes were also presented. The high sensitivity and selectivity of the proposed method allowed its successful application to rain water, mainstream smoke (MSS) and disposed tips of smoked cigarettes (DTSC). A sample aliquot was directly analyzed for its total water-soluble aldehyde content. A second sample aliquot was heated at 80 degrees C for 10min to expel acetaldehyde and the aliquot was analyzed for its content of other water-soluble aldehydes (expressed as formaldehyde equivalent), and acetaldehyde was determined by difference. The analytical results were in excellent agreements with those obtained following the standard HPLC method based on pre-column derivatization with 2,4-dinitrophenylhydrazine. Moreover, published catalytic-spectrophotometric methods for the determination of aldehydes were reviewed.  相似文献   

12.
A new precise and sensitive method was used for the quantification of aliphatic aldehydes from C5 to C11 in highly ethanolic beverages such as freshly distilled spirits. Carbonyl compounds were derivatized using 3-methylbenzothiazolin-2-one hydrazone (MBTH) and then separated and detected by gas chromatography-mass spectrometry (GC-MS). Selective mass spectrometric detection of molecular ions of derivatives was performed to obtain a good sensibility (0.2-1.2 microg l(-1)) and a good selectivity. For a concentration of 20 microg l(-1), relative standard deviations were lower than 10% except for heaviest compounds (decanal and undecanal) where RSD were between 11 and 13%. The concentrations of aliphatic aldehydes were determined in nine samples of freshly distilled Calvados and two samples of freshly distilled Cognac with highest concentrations reported for 3-methylbutanal (from 170 to 1220 microg l(-1) in Calvados and from 1540 to 5500 microg l(-1) in Cognac). 3-Methylbutanal and hexanal, due to their low detection thresholds, could be important olfactive markers of these two products. Less than 1h30 is required to quantify the nine studied aliphatic aldehydes in freshly distilled spirits.  相似文献   

13.
Sakai T  Nagasawa H  Nishikawa H 《Talanta》1996,43(6):859-865
A simple flow-injection (FI) spectrofluorimetric method for the assay of total volatile aldehydes in auto exhaust gas and emission gas from thermal degradation was developed. Aldehydes, such as formaldehyde, acetaldehyde, propionaldehyde and n-butyraldehyde, reacted with cyclohexane-1,3-dione (CHD) to form more strongly fluorescent compounds. A two-channel flow system was assembled. Distilled water and 0.02% CHD were delivered at 0.75 ml min(-1). The optimum conditions were pH 5 (2.2 M CH(3)COONH(4)-CH(3)COOH buffer solution), reaction temperature 70 degrees C, reaction coil length 0.5 mm i.d. x 7 m, cooling coil length 2 m, sample size 60 microl, excitation and emission wavelengths, 376 nm and 452 nm. Aldehydes in sample gas (10 1) were collected by passing the gas at a flow rate of 0.5 1 min(-1) through two impingers connected in series. 10 ml of methanol was used as an absorbent and diluted sample solution was injected into the carrier stream. The calibration graph was linear in the range 100-1000 ppb. The detection limit was 30 ppb and a sampling frequency of 30 h(-1) was attained. Relative standard deviation for 10 standard formaldehyde solutions (500 ppb) was 1.5%. This rapid and simple FI method was applied to the determination of the total amount of aldehydes, calculated as formaldehyde, in auto exhaust gas and emission gas from the thermal degradation of polymers. The method is useful for monitoring aldehyde emissions and investigating the removal effect of aldehydes from various sources.  相似文献   

14.
气相色谱法快速测定空气中低分子量醛   总被引:6,自引:0,他引:6  
任清  郭友嘉 《色谱》1997,15(4):356-357
用填充气相色谱直接进样法测定了污染空气中甲醛、乙醛、丙醛的含量,并对方法的灵敏度、准确度及各种影响因素进行了探讨。方法用于样品测定取得了较为满意的结果。  相似文献   

15.
龚淑果  梁勇  唐丽云  黄平  戴云辉 《色谱》2017,35(7):755-759
建立了丹磺酰肼(DNSH)衍生-高效液相色谱-荧光检测测定包装纸中甲醛和乙醛的分析方法,并与2,4-二硝基苯肼(DNPH)衍生法进行了比较。纸张样品经衍生化试剂振荡萃取30 min,衍生化反应24 h,萃取液经PSA/C18净化管净化处理后,以Diamonsil~ C18(2)色谱柱(150 mm×4.6 mm,5μm)为固定相,用醋酸水溶液(pH2.55)-乙腈为流动相进行梯度洗脱。采用荧光检测器检测,激发波长为330 nm,发射波长为484 nm。结果表明,衍生剂、甲醛-DNSH和乙醛-DNSH在20 min内可完全分离,方法的加标回收率为81.64%~106.78%,相对标准偏差(RSD)为2.02%~5.53%(n=5),甲醛和乙醛的检出限分别为19.2μg/kg和20.7μg/kg,定量限分别为63.9μg/kg和69.1μg/kg。该法操作简单,灵敏度高,比常规方法具有更低的检出限,能很好地应用到实际样品检测中,为低含量醛类化合物的检测提供了一种新思路。  相似文献   

16.
Ultrasound-assisted dispersive liquid-liquid microextraction (UDLLME) and simultaneous derivatization followed by GC-MS was developed for the analysis of four aldehydes including acetaldehyde (ACE), propionaldehyde (PRO), butyraldehyde (BUT) and valeraldehyde (VAL) in water samples. In the proposed method, the aldehydes were derivatized with O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine (PFBHA) and extracted by UDLLME in aqueous solution simultaneously; finally, the derivatives were analyzed by GC-MS. The experimental parameters were investigated and the method validations were studied. The optimal conditions were: aqueous sample of 5 mL, PFBHA of 50 μL, 1.0 mL ethanol (disperser solvent) containing 20 μL chlorobenzene (extraction solvent), ultrasound time of 2 min and centrifuging time of 3 min at 6000 rpm. The proposed method provided satisfactory precision (RSD 1.8-10.2%), wide linear range (0.8-160 μg/L), good linearity (R(2) 0.9983-0.9993), good relative recovery (85-105%) and low limit of detection (0.16-0.23 μg/L). The proposed method was successfully applied for the analysis of aldehydes in water samples. The experimental results showed that the proposed method was a very simple, rapid, low-cost, sensitive and efficient analytical method for the determination of trace amount of aldehydes in water samples.  相似文献   

17.
In this paper, capillary zone electrophoresis with amperometric detection (CZE-AD) was first applied to the simultaneous separation and determination of amitrole and urazole in water samples. A simple end-column electrochemical detector was used in combination with a commercially available capillary electrophoresis instrument with UV detection. The effects of several important factors were investigated to find optimum conditions. A carbon disk electrode was used as working electrode. Separation and determination of these compounds in water samples were performed in 0.030 mol l(-1) acetate buffers at pH 4.5, 25 kV as separation voltage and the samples were introduced by hydrodynamic mode for 1.5 s. Most of the studies realized showed that the direct electrochemical detection is more sensitive and selective than UV detection. Under the optimum conditions, excellent linearity was observed between peak amperometric signal and analyte concentrations in the range of 0.19-1.35 mg l(-1) for amitrole and 0.20-1.62 mg l(-1) for urazole. The detection limits were 63 and 68 microg l(-1) for amitrole and urazole, respectively. The utility of this method was demonstrated by monitoring water samples, and the assay results were satisfactory. The detection limits using a previous preconcentration step for amitrole and urazole in spiked mineral water samples were 0.6 and 1.0 microg l(-1) for amitrole and urazole, respectively.  相似文献   

18.
In this paper, the formation mechanism of pyrolysis gases released during the pyrolysis of pectin under the conditions that simulate cigarette smouldering was investigated by thermogravimetric analysis coupled to Fourier transform infrared spectrometer (TG-FTIR). Moreover, the combustion behavior of pyrolysis gases was studied by micro-scale combustion calorimetry (MCC). TG-FTIR results illustrated that the composition of the gaseous products was mainly composed of CO2, H2O, CO, methanol, methane and carbonyl compounds. MCC results demonstrated that the combustion of pectin was mainly determined by the prolysis gases formed in the temperature range of 200-300 °C. Flash pyrolysis experiment in combination with high performance liquid chromatography (FPy-HPLC) was used to study the pyrolytic formation of eight carbonyl compounds (i.e. formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde, crotonaldehyde, methyl ethyl ketone and butyraldehyde) during the pyrolysis of pectin under the pyrolysis conditions of cigarette puffing. Results demonstrated that pyrolysis temperature influenced the formation of acetaldehyde, acrolein, propionaldehyde and butyraldehyde greatly, while nitrogen flow affected the generation of formaldehyde, acetone, crotonaldehyde and methyl ethyl ketone deeply.  相似文献   

19.
Study was carried out to develop two simple, fast, accurate and sensitive spectrophotometric methods (A and B) for the determination of citalopram hydrobromide in commercial tablet formulations. In method A, UV spectrophotometer determined the contents of citalopram hydrobromide in tablets at 240 nm in methanol solvent. The linear range was 5-40 microg ml-1 with molar absorptivity 1.4x10(4) l mol-1 cm-1. While the method B based on the reaction of citalopram base as n-electron donor with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone as pi-acceptors to give highly colored complex species that absorb maximally at 590 nm. Beer's law was obeyed in the concentration limit of 10-250 microg ml-1 with molar absorptivity 3.3x10(3) l mol-1 cm-1 for citalopram hydrobromide. The limits of detection and limit of quantification was calculated and found to be 5.2 microg ml-1 and 17.4 microg ml-1 respectively. The proposed methods were found to be rapid, accurate, precise and sensitive for the determination of citalopram hydrobromide in commercial tablet formulations with out interferences from common additives encountered.  相似文献   

20.
《Electrophoresis》2017,38(7):1068-1074
In this work, the use of a novel derivatization agent for the determination of aldehydes (in this particular case: formaldehyde, acetaldehyde, propionaldehyde, and valeraldehyde) using micellar electrokinetic chromatography is reported. The derivatization reaction is based on the reaction of aldehydes with benzhydrazide to form the corresponding derivates with maximum absorbance at 250 nm. The experimental conditions of the derivatization reaction as well of the separation were optimized. The adducts were separated with a +22 kV voltage at a temperature of 29°C. The adducts’ separation was performed in less than 14 min using as the running buffer a mixture containing 110 mmol/L of sodium dodecyl sulfate and 27 mmol/L of sodium tetraborate at pH 9.45. Samples were injected using hydrodynamic mode (50 mbar × 5 s). The calibration curves were linear up to 15.0 mg/L with r 2 above 0.99. Intra and inter‐day precisions were in average 3 and 4%, respectively, and recoveries were in average of 95%. Limits of detection and quantification were around 0.5 and 1.5 mg/L, respectively. The developed method was successfully applied in the analysis of low molar weight aldehydes in yogurt and vinegar samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号