首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of composition of ethanol–dimethyl sulfoxide (EtOH–DMSO) solvents (χDMSO = 0.0–1.0 mole fractions) on the stability of silver(I) complexes with 18-crown-6 ether (18C6) has been studied potentiometrically at 298.15 K. The increasing of DMSO concentrations in mixed solvents are shown to considerably reduce the stability of 18C6 complexes with silver(I) ion ([Ag18C6]+). A change in the solvation state of the central ion is suggested to be the key factor in shifting complexing equilibrium.  相似文献   

2.
The Gibbs energies of transferring triglycine (3Gly, glycyl-glycyl-glycine) from water into mixtures of water with dimethyl sulfoxide (χDMSO = 0.05, 0.10, and 0.15 mole fractions) at 298.15 K are determined from the interphase distribution. An increased dimethyl sulfoxide (DMSO) concentration in the solvent slightly raises the positive values of Δtr G (3Gly), possibly indicating the formation of more stable 3Gly-H2O solvated complexes than ones of 3Gly-DMSO. It is shown that the change in the Gibbs energy of transfer of 3Gly is determined by the enthalpy component. The relationship of 3Gly and 18-crown-6 ether (18C6) solvation’s contributions to the change in the Gibbs energy of [3Gly18C6] molecular complex formation in H2O-DMSO solvents is analyzed, and the key role of 3Gly solvation’s contribution to the change in the stability of [3Gly18C6] upon moving from H2O to mixtures with DMSO is revealed.  相似文献   

3.
Proton NMR spectroscopy was used to study the complexation reaction of 18-crown-6 (18C6) with K+, Rb+ and Tl+ ions in a number of binary dimethyl sulfoxide-nitrobenzene mixtures. In all cases, the exchange between free and complexed crowns was fast on the NMR time scale and only a single population average 1H signal was observed. Formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the chemical shift-mole ratio data. There is an inverse relationship between the complex stability and the amount of dimethyl sulfoxide in the mixed solvent. It was found that, in all solvent mixtures used, Rb+ ion forms the most stable complex with 18-crown-6 in the series.  相似文献   

4.
The complexation of some alkali and alkaline earth cations with18-crown-6(18C6), dibenzo-18-crown-6 (DB18C6), dicyclohexyl-18-crown-6 (DCY18C6), and dibenzopyridino-18-crown-6 (DBPY18C6) in a methanol solution has been studied by a competitive potentiometric titration using Ag+/Ag electrode as a probe. The stoichiometry and stability constants of the resulting complexes have been evaluated by the MINIQUAD program. The stoichiometry for all resulting complexes was 1:1. The order of stability of Ag+ complexes with desired crown ethers varied as DBPY18C6 > DCY18C6 > 18C6 > DB18C6.The stability of the resulting complexes for each of these crown ethers varies in the order ofK+ > Na+ and Ba2+ > Sr2+ > Ca2+ > Mg2+.For each of the used metal ions the major sequence of the stability constants of the resulting complexes varies as DCY18C6 > 18C6 > DB18C6 > DBPY18C6 with minor exceptions.  相似文献   

5.
The effect of a water-dimethylsulfoxide (DMSO) solvent on the formation of a molecular complex of 18-crown-6 (18C6) with triglycine (diglycylglycine, 3Gly) is studied via calorimetric titration. It is found that switching from water to an H2O-DMSO mixture with DMSO mole fraction of 0.30 is accompanied by a monotonic increase in the stability of [3Gly18C6] complex, from logK ° = 1.10 to logK ° = 2.44, and an increase in the exothermicity of the reaction of its formation, from ?5.9 to ?16.9 kJ/mol. It is shown that the [3Gly18C6] complex exhibits enthalpy stabilization with negative values of enthalpy and entropy over the investigated range of H2O-DMSO solvents. Analysis of the reagents’ solvation characteristics reveals that the increase in the reaction’s exothermicity of transfer is due to differences in the solvation of [3Gly18C6] and 18C6 with a small solvation contribution from 3Gly. It is concluded that the change in the Gibbs energy of the reaction 3Glysolv + 18C6solv ? [3Gly18C6]solv is due to differences in the change in the solvation state of the complex and the peptide (Δtr G °([3Gly18C6])-Δtr G °(3Gly)).  相似文献   

6.
23Na NMR measurements were employed to monitor the stability of Na+ ion complexes with 18-crown-6 (18C6), dicycloxyl-18-crown-6 (DC18C6), dibenzo-18-crown-6 (DB18C6), 15-crown-5 (15C5) and benzo-15-crown-5 (B15C5) in binary acetonitrile–dimethylformamide mixtures of varying composition. In all cases, the variation of 23Na chemical shift with [crown]/[Na+] mole ratios indicated the formation of 1:1 complexes. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation which relates the observed chemical shifts to the formation constants. It was found that, in pure acetonitrile, the stabilities of the resulting 1:1 complexes vary in the order 15C5>DC18C6>B15C5>18C6>DB18C6, while in pure dimethylformamide the stability order is DC18C6>18C6>15C5>B15C5>DB18C6. The observed changes in the stability order could be related to the specific interactions between some crown ethers and acetonitrile. It was found that, in the case of all complexes, an increase in the percentage of dimethylformamide in the solvent mixtures would significantly decrease the stability of the complexes.  相似文献   

7.
The complexation reactions betweenT1+, Hg2+ andAg+ metal cations with 18-Crown-6 (18C6)were studied in acetonitrile (AN)-methanol (MeOH) andbenzonitrile (BN)-methanol (MeOH) binary mixtures at differenttemperatures using the conductometric method. The conductance datashow that the stoichiometry of the complexes in most cases is1 : 1 (ML), but in the case of theTl+ cation, in addition to a1 : 1 complex, a 1 : 2 (ML2)complex is formed in solutions. A non-linear behaviourwas observed for the variation of log Kfof the complexes vs the composition of the binary mixed solvents. The stability of 18C6 complexes with T1+, Hg2+ and Ag+ cations is sensitive to solvent composition and in some cases, the stability order is changed with changingthe composition of the mixed solvents. The values of the thermodynamic parameters (Δ Hc°, Δ Sc°) for formation of 18C6-T1+, 18C6-Hg+2 and the 18C6-Ag+ complexes were obtained from the temperature dependence of the stability constants and the results show that the thermodynamics of the complexationreactions is affected by the nature and composition of the mixed solvents and in most cases, the complexes are enthalpy destabilized but entropy stabilized.  相似文献   

8.
Cesium-133 nuclear magnetic resonance spectroscopy was used as a sensitive probe to investigate the stoichiometry and stability of Cs+ ion complexes with aza-18-crown-6 (A18C6), diaza-18-crown-6 (DA18C6) and dibenzylediaza-18-crown-6 (DBzDA18C6) in different binary acetonitrile?Cnitromethane mixtures. In all cases, the exchange between free and complexed cesium ion was fast on the NMR time scale and only a single population average resonance was observed. The 133Cs chemical shift?Cmole ratio data indicated that the cesium ion forms 1:1 cation?Cligand complexes with the investigated aza-crowns in all acetonitrile?Cnitromethane mixtures. The formation constants of the resulting complexes were evaluated from computer fitting of the chemical shift?Cmole ratio data. The stability of the resulting 1:1 complexes with Cs+ were found to vary in the order A18C6 > DBzDA18C6 > DA18C6. In all cases, there is the inverse relationship between the complex stability constants and the amount of acetonitrile in the mixed solvent.  相似文献   

9.
A method based on matrix solid phase dispersion (MSPD) using C18 as dispersant and dichloromethane-methanol as eluent and liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) has been developed for the simultaneous determination of imidacloprid, 6-chloronicotinic acid, carbaryl, aldicarb, aldicarb sulfoxide, and aldicarb sulfone in honeybees.The proposed method was compared with liquid-liquid extraction (LLE) combined with LC-APCI-MS analysis. Spiked blank samples were used as standards to counteract the matrix effect observed in the chromatographic determination. Recovery studies were performed at different fortification levels. Average recoveries by MSPD varied from 61% of 6-chloronicotinic acid to 99% of aldicarb sulfoxide and relative standard deviations were equal or lower than 14%. Limit of detections ranged from 0.004 mg kg−1 for imidacloprid to 0.09 mg kg−1 for 6-chloronicotinic acid. Results obtained by both methods were compared, MSPD showed higher recoveries and sensitivity than LLE for most pesticides, except for carbaryl. As MSPD is easier to perform, faster, consumes less sample and organic solvents than LLE, its application for pesticide analysis in honeybees is suggested.  相似文献   

10.
A conductance study of the interaction between Pb2+ ion and 18-crown-6 (18C6), benzo-18-crown-6 (B18C6), dicyclohexyl-18-crown-6 (DC18C6), aza-18-crown-6 (A18C6), diaza-18-crown-6 (DAI8C6), dibenzopyridino-18-crown-6 (DBPy18C6), and dibenzyldiaza-18-crown-6 (DBzDA18C6) in acetonitrile–dimethyl sulfoxide mixtures was carried out at various temperatures. The formation constants of the resulting 1:1 complexes were determined from the molar conductance–mole ratio data and found to vary in the order DA18C6 > A18C6 > DBzDA18C6 > DC18C6 > 18C6 > B18C6 > DBPy18C6. The enthalpy and entropy of complexation reactions were determined from the temperature dependence of the formation constants. In all cases, the resulting complexes are enthalpy stabilized, but entropy destabilized. A linear relationship is observed between log K f of different complexes and mole fraction of acetonitrile in the solvent mixtures. The TS 0 vs. H 0 plot of all thermodynamic data obtained shows a fairly good linear correlation indicating the existence of an enthalpy–entropy compensation in the complexation reactions.  相似文献   

11.
The Gibbs energies of transfer of 18-crown-6 ether from water into water-dimethyl sulfoxide (DMSO) solvents (χDMSO = 0.0–0.97 mole fractions) at 298.15 K were determined by the interphase distribution method. Changes in the composition of the aqueous-organic solvent did not cause noticeable changes in the stability of 18-crown-6 ether solvato complexes. Reagent solvation contributions to shifts of complex formation equilibrium between silver(I) and 18-crown-6 ether when water was replaced with dimethyl sulfoxide were analyzed.  相似文献   

12.
The complexation reactions between some rare earth metal cations (Ln; Y3+, La3+ and Ce3+) with 18-crown-6 (18C6), dicyclohexyl-18-crown-6 (DC18C6), benzo-18-crown-6 (B18C6) and decyl-18-crown-6 (Dec18C6), have been studied in methanol–acetonitrile (MeOH–AN) and methanol–water (MeOH–H2O) binary mixtures using a competitive spectrophotometric method. 2-(2-thiazolylazo)-4-methyl phenol (TAC or L) was used as colorimetric complexant. It was found that the selectivity order of TAC for Ln cations is highly changed with changing the composition of the mixed solvents. Moreover, as the concentration of acetonitrile increases in MeOH–AN binary mixture, the stability of Ln–TAC complexes increases and passes through a maximum at a certain mole fraction of acetonitrile. In addition, the stability of Ln–crown ether complexes increases with increasing the concentration of methanol in MeOH–H2O and acetonitrile in MeOH–AN binary solutions. A non linear behaviour was observed for variation of stability constants of all complexes versus the composition of the mixed solvents. The results show that 18C6 generally forms more stable complexes with La3+ and Ce3+ cations than DC18C6 in methanol and MeOH–H2O binary mixtures, while this sequence is reversed in the methanol-acetonitrile binary mixtures which are rich with respect to acetonitrile.  相似文献   

13.
The stability constants of the complex[Cs(18C6)]+ (18C6 is 18-crown-6 (L)) in N-butylpyridinium methyl sulfate (I) and of the complex [Cs(18C6)2]+ in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (II) were measured by using 133Cs NMR spectroscopy at 23°C. It was found that logK(Cs + L) in solvent I is 1.20±0.13 and logK(CsL + L) in solvent IIis 1.18±0.05. For the complex [Cs(18C6)2]+, the dependence of its stability constant on the temperature in the 23–50°C range was obtained and the enthalpy change in the complexation was determined: ΔH(CsL + L)= ?47 kJ/mol. It was demonstrated that the enthalpy change is favorable for the formation of [Cs(18C6)2]+, while the entropy change hinders the complexation.  相似文献   

14.
Standard thermodynamic parameters (logK o, ??r H o, T??r S o) of complexing 18-crown-6 ether (18C6) with D,L-alanine (Ala) in mixed water-dimethysulfoxide (H2O-DMSO) solvents are calculated on the basis of calorimetric titration results. A rise in the DMSO concentration in mixed solvent is found to increase stability and increase the exothermicity of the formation of [Ala-18C6] molecular complex. Changes in the reaction energetic are shown to be determined by changes in the solvation state of 18C6 that is the characteristic of the reactions of molecular complex formation between 18C6 and D,L-alanine or glycine in water-organic solvents.  相似文献   

15.
Heats of solution of 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6) in acetonitrile, 1,2-dichloroethane, N,N-dimethylformamide, dimethyl sulfoxide, nitromethane, propylene carbonate, pyridine and water were measured at 25 °C and the enthalpies of the transfer of 18-crown-6 from waterto the aprotic solvents were derived. The thermodynamic quantities, G1°, H1° and T S1°, for the formation of the[M(18-crown-6)]+ (M+ = Na+, K+, Rb+, Cs+, NH4 +) complexeswere determined by titration calorimetry in dimethyl sulfoxide containing0.1 mol dm-3 (C2H5)4NClO4 as a constant ionic medium at 25 °C. These thermodynamic quantities suggest that the complexationof 18-crown-6 with the alkali-metal ions mainly reflects the different solvationof 18-crown-6 and also the different degree of solvent structure.  相似文献   

16.
The complexation reaction between Eu3+, La3+, Er3+ and Y3+ cations with the dicyclohexyl-18-crown-6 (DCH18C6) in acetonitrile (AN)–dimethylformamide (DMF) and AN–methanol (MeOH) binary systems have been studied at different temperatures using conductometric method. The conductometric data show that the stoichiometry of the complexes is 1:1 [ML]. The results show that the stability constant of complexes in various solvents is: AN > MeOH > DMF. In the some cases, the minimum of logKf for (DCH18C6–Eu3+), (DCH18C6–La3+), (DCH18C6–Er3+) and (DCH18C6–Y3+) complexes in AN–MeOH binary systems obtain at χMeOH ~ 0.75, and also, the logKf of (DCH18C6–Er3+) complex in AN–DMF binary systems show a minimum at χAN ~ 0.75. Non-linear behavior was observed for the stability constant of complexes versus the composition of the solvent systems. The experimental data show that the selectivity order of DCH18C6 for these cations in AN–MeOH binary systems (mol% AN = 50, 75) at 25 °C is: Y3+ > Er3+ > Eu3+ > La3+. The values of thermodynamic parameters (?H?C) for formation of complexes were obtained from temperature dependence of stability constants of complexes using the van′t Hoff plots and the standard entropy (?S?C) were calculated from the relationship: ?G?C, 298.15 = ?H?C ?298.15?S?C. The results show that the values of these thermodynamic parameters are influenced by the nature and the composition of the binary systems.  相似文献   

17.
本文采用微量电导滴定技术和计算机拟合,获得在DMF中Na+和K+与2,3-苯并-11-甲基-18-冠-6(BCl-18C6),2,3-苯并-8,15-二甲基-18-冠-6(BC2-18C6),2,3-苯并-8,11,15-三甲基-18-冠-6(BC3-18C6)的配合物的稳定常数及反应热焓,并对所得结果进行了讨论。  相似文献   

18.
二环己基-18-冠-6(DCH18C6)可以有效地从高放废液中分离90Sr,对于减小放射性废物的危害和实现高放废物的减容有重要意义. 由于在实际应用中DCH18C6处于射线照射下,其结构可能会被破坏并引起络合能力的变化,因此有必要对该配合物的辐射稳定性进行研究. 本文合成了Sr(NO32·DCH18C6 配合物晶体,并通过单晶X射线衍射(XRD)与扩展X射线吸收精细结构谱(EXAFS)等方法进行了表征,确定Sr2+与周围氧原子的配位数为10,Sr―O平均键长约为0.268 nm/0.266 nm(XRD/EXAFS). 配位原子来自DCH18C6 的六个氧原子以及两个作为双齿配体的硝酸根的四个氧原子. 对该配合物晶体在空气中进行γ辐照,EXAFS结果表明吸收剂量为400 kGy时,Sr―O键长及配位数没有发生变化,配位结构没有被破坏,具有很好的耐辐照稳定性. 显微红外光谱(Micro-FTIR)结果进一步证明辐照后冠醚环的部分C―H 键氧化为羟基或羰基,但并不影响DCH18C6与Sr2+的配位结构.  相似文献   

19.
The complexation reaction between UO2 2+ cation with macrocyclic ligand, 18-crown-6 (18C6), was studied in acetonitrile–methanol (AN–MeOH), nitromethane–methanol (NM–MeOH) and propylencarbonate–ethanol (PC–EtOH) binary mixed systems at 25 °C. In addition, the complexation process between UO2 2+ cation with diaza-18-crown-6 (DA18C6) was studied in acetonitrile–methanol (AN–MeOH), acetonitrile–ethanol (AN–EtOH), acetonitrile–ethylacetate (AN–EtOAc), methanol–water (MeOH–H2O), ethanol–water (EtOH–H2O), acetonitrile–water (AN–H2O), dimethylformamide–methanol (DMF–MeOH), dimethylformamide–ethanol (DMF–EtOH), and dimethylformamide–ethylacetate (DMF–EtOAc) binary solutions at 25 °C using the conductometric method. The conductance data show that the stoichiometry of the complexes formed between (18C6) and (DA18C6) with UO2 2+ cation in most cases is 1:1 [M:L], but in some solvent 1:2 [M:L2] complex is formed in solutions. The values of stability constants (log Kf) of (18C6 · UO2 2+) and (DA18C6 · UO2 2+) complexes which were obtained from conductometric data, show that the nature and also the composition of the solvent systems are important factors that are effective on the stability and even the stoichiometry of the complexes formed in solutions. In all cases, a non-linear relationship is observed for the changes of stability constants (log Kf) of the (18C6 · UO2 2+) and (DA18C6 · UO2 2+) complexes versus the composition of the binary mixed solvents. The stability order of (18C6 · UO2 2+) complex in pure studied solvents was found to be: EtOH > AN ≈ NM > PC ≈ MeOH, but in the case of (DA18C6 · UO2 2+) complex it was : H2O > MeOH > EtOH.  相似文献   

20.
The complexation reactions between Tl+ and Ag+ ions and several crown ethers have been studied conductometrically in acetonitrile, acetone and dimethylformamide solutions at 25°C. The stability constants of the resulting 1:1 complexes were determined, and found to decrease in the order DA18C6>DC18C6>DB30C10>18C6>DB21C7>DB24C8>DB18C6>B15C5 >12C4, in the case of Tl+ complexes, and in the order DA18C6>DC18C6>18C6>DB18C6 >DB24C8>DB30C10B15C5>DB21C7 for Ag+ complexes. There is an inverse relationship between the stabilities of the complexes and the Gutamnn donicity of the solvents. The influence of a number of atoms in the macrocycle and of substituents in the polyether ring on the stability of the complexes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号