首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three urea derivatives of ergoline-based chiral selectors (CSs), differing in the size of the urea side chain, i.e. dimethyl- (CSI), diethyl- (CSII), and diisopropylurea (CSIII), were used to study the effect of steric hindrance on the enantioseparation of dansyl amino acids (Dns-AAs), pesticides, and mandelic acid under condition of capillary electrophoresis (CE) in linear polyacrylamide coated capillaries. A mixture of organic modifiers (MeOH/THF, 4:1 v/v) in a BGE consisting of 100 mM beta-alanine-acetate was used to increase the solubility of CSs up to 25 mM. The capillary was filled with CS (high UV absorption), and the inlet and outlet vials contained buffer solutions only. The best enantioseparation of Dns-AAs was achieved on CSI. Increased steric hindrance of the chiral binding site led to reduction of both enantioselectivity and resolution. The opposite pattern was observed for the separation of mandelic acid enantiomers, where the best enantioseparation and resolution was obtained with CSIII. Most of the pesticides studied reached maximum selectivity on the diethylurea ergoline derivative (CSII). Enantioseparation of fenoxaprop was found to be independent of steric hindrance.  相似文献   

2.
Introducing a new class of chiral selectors is an interesting work and this issue is still one of the hot topics in separation science and chirality. In this study, for the first time, sulfated maltodextrin (MD) was synthesized as a new anionic chiral selector and then it was successfully applied for the enantioseparation of five basic drugs (amlodipine, hydroxyzine, fluoxetine, tolterodine, and tramadol) as model chiral compounds using CE. This chiral selector has two recognition sites: a helical structure and a sulfated group which contribute to three corresponding driving forces; inclusion complexation, electrostatic interaction, and hydrogen binding. Under the optimized condition (buffer solution: 50 mM phosphate (pH 3.0) and 2% w/v sulfated MD; applied voltage: 18 kV; temperature: 20°C), baseline enantioseparation was observed for all mentioned chiral drugs. When instead of sulfated MD neutral MD was used under the same condition, no enantioseparation was observed which means the resolution power of sulfated MD is higher than neutral MD due to the electrostatic interaction between sulfated groups and protonated chiral drugs. Also, the countercurrent mobility of negatively charged MD (sulfated MD) allows more interactions between the chiral selector and chiral drugs and this in turn results in a successful resolution for the enantiomers. Furthermore, a higher concentration of neutral MD (approximately five times) is necessary to achieve the equivalent resolution compared with the negatively charged MD.  相似文献   

3.
In capillary electrophoresis (CE), separation of enantiomers of a chiral compound can be achieved through the chiral interactions and/or complex formation between the chiral selector and the enantiomeric analytes on leaving their diastereomeric forms with different stability constants and hence different mobilities. A great number of chiral selectors have been employed in CE and among them macrocyclic antibiotics exhibited excellent enantioselective properties towards a wide number of racemic compounds. The use of azithromycin (AZM) as a chiral selector has not been reported previously. This work reports the use of AZM as a chiral selector for the enantiomeric separations of five chiral drugs and one amino acid (tryptophan) in CE. The enantioseparation is carried out using polar organic mixtures of acetonitrile (ACN), methanol (MeOH), acetic acid and triethylamine as run buffer. The influences of the chiral selector concentration, ACN/MeOH ratio, applied voltage and capillary temperature on enantioseparation are investigated. The results show that AZM is a viable chiral selector in CE for the enantioseparation of the type of chiral drugs investigated.  相似文献   

4.
The evaluation of a macrocyclic glycopeptide antibiotic, eremomycin, as a chiral selector in capillary electrophoresis (CE) has been performed. The stability of eremomycin in solution and capillary electrolyte, as well as its optical and electrophoretic properties have been discussed. The effect of experimental parameters influencing the enantioseparation of several profens has been studied. Excellent enantioseparation of profens has been achieved and migration order has been validated. Comparison of enantioseparations of profens in CE by using eremomycin-mediated electrolytes and in HPLC with eremomycin immobilized on silica has revealed similar trends for both methods.  相似文献   

5.
Summary Neutral cyclodextrin (CD)-modified capillary zone electrophoresis (CZE) has been applied to the chiral separation of four basic drugs— clorprenaline, benzhexol, esmolol and terazosin. Selector screening and concentration optimization experiments were performed. The resolution was 3.9 for clorprenaline, 2.3 for benzhexol, 3.1 for esmolol and 1.2 for terazosin when the running electrolyte was 60 mM hydroxypropyl-β-CD, 15 mM heptakis (2,3,6-Tri-O-methyl)-β-CD, 60 mM γ-CD and 60 mM heptakis (2,6-di-O-methyl)-β-CD, respectively, in 50 mM, pH 2.5 sodium phosphate buffer.  相似文献   

6.
Enantiomer separations of underivatised amino acids were carried out by using ligand exchange capillary electrophoresis (LECE). Chiral discrimination is based on the formation of ternary complexes between copper(II), a chiral selector (L-proline or trans-4-hydroxy-L-proline) and an amino acid. All amino acids containing aromatic moieties or not were detected at 214 nm because of their interactions with copper(II). In order to reduce copper(II) adsorption onto capillary walls, we used hexadimethrine bromide to reverse the electroosmotic flow. Using this original strategy, the studied enantiomers migrated in the opposite direction of the anodic electroosmosis. After optimising the analytical conditions taking into account the chiral resolution and the detection sensitivity, we performed very satisfactory enantioseparations not only of aromatic amino acids (tryptophan, tyrosine, phenylalanine and histidine) but also of aliphatic amino acids (threonine, serine, isoleucine and valine). These enantioseparations were performed in a short analysis time at 35 °C. In order to rationalise the obtained results, we evaluated the complexation constants corresponding to the formed ternary complexes by capillary electrophoresis and we used molecular mechanics modelling.  相似文献   

7.
Lin X  Zhu C  Hao A 《Electrophoresis》2005,26(20):3890-3896
The resolving ability of 2-O-(2-hydroxybutyl)-beta-CD (HB-beta-CD) with different degrees of substitution (DS = 2.9 and 4.0) as a chiral selector in CZE is reported in this work. Fourteen chiral drugs belonging to different classes of compounds of pharmaceutical interest such as beta-agonists, antifungal agents, ageneric agents, etc., were resolved. The effects of the DS of HB-beta-CD on separations were also investigated. The chiral resolution (R(s)) was strongly influenced by the concentrations of the CD derivative, the BGE, and the pH of the BGE. Under the conditions of 50 mmol/L Tris-phosphate buffer at pH 2.5 containing 5 mmol/L HB-beta-CD, all 14 analytes were separated. The very low concentration necessary to obtain separation was particularly impressive. The DS had a significant effect on the resolution of the chiral drugs and the ionic strength of the separation media; hence, the use of a well-characterized CD derivative is crucial.  相似文献   

8.
To improve resolution power of chiral selector and enantiomeric peak efficiency in CE, single isomer negatively charged β‐CD derivatives, mono(6‐deoxy‐6‐sulfoethylthio)‐β‐CD (SET‐β‐CD) bearing one negative charge and mono[6‐deoxy‐6‐(6‐sulfooxy‐5,5‐bis‐sulfooxymethyl)hexylthio]‐β‐CD (SMHT‐β‐CD) carrying three negative charges, were synthesized. The structure of these two β‐CD derivatives was confirmed by 1H NMR and MS. SET‐β‐CD and SMHT‐β‐CD successfully resolved the enantiomers of several basic model compounds. SMHT‐β‐CD provided for a significantly greater enantioseparation than SET‐β‐CD at lower concentrations. This appears to be due to the higher binding affinity of SMHT‐β‐CD to the model compounds and the wider separation window resulting from an increased countercurrent mobility of the selector. Overall, the new chiral selectors provided enantioseparations with high peak efficiency while avoiding peak distortion due to polydispersive and electrodispersive effects. The information obtained from an apparent binding constant study suggested that the enantioseparation of the model compounds followed the predictions of charged resolving agent migration model and that the observed degree of enantioseparation difference were due to the magnitude of differences in both enantiomer‐chiral selector binding affinities (ΔK) and the mobilities of the complexed enantiomers (Δμc).  相似文献   

9.
Chen J  Du Y  Zhu F  Chen B 《Journal of chromatography. A》2010,1217(45):7158-7163
Several chiral reagents including cyclodextrins (CDs) and derivatives, crown ethers, proteins, chiral surfactants and polymers have been involved in dual selector systems for enantioseparation of a series of chiral compounds by capillary electrophoresis (CE). In comparison to the chiral reagents above-mentioned, there is no report concerning the use of polysaccharides in dual chiral CE system. In this paper we first investigate the enantioselectivity of polysaccharide-based dual selector systems towards some chiral drugs. During our recent work, glycogen belonging to the class of branched polysaccharides has been used as a novel chiral selector in CE. In this study, three glycogen-based dual chiral CE systems have been established for enantiomeric separations of several racemic basic drugs consisting of duloxetine, cetirizine, citalopram, sulconazole, laudanosine, amlodipine, propranolol, atenolol and nefopam. These three dual systems combined glycogen (neutral polysaccharide) with chondroitin sulfate A (CSA, ionic polysaccharide), β-CD and HP-β-CD, respectively. It was found that the dual system of glycogen/CSA exhibited good enantioselective properties toward the tested drugs. More importantly, compared to the single selector systems, synergistic effect was observed when glycogen was used with CSA for most of the analytes. This indicated the enhancement of enantioseparation observed for these analytes in glycogen/CSA system might be due to some favorable interaction effects between glycogen and CSA. Moreover, in order to evaluate the stereoselectivity of glycogen/CSA, the influences of buffer pH and selector concentration on enantioseparation of the studied drugs were also investigated.  相似文献   

10.
Based on the separation selectivity equation, related to the dimensionless parameters for fully charged achiral analytes using a neutral CD, the separation selectivity can be classified into seven patterns. With respect to CZE without CD, the presence of CD in the buffer may improve, or reduce, the separation selectivity with this effect being accompanied by the same or reversed electrophoretic mobility order for charged analytes. This can depend on the separation selectivity of the two analytes in free solution, the binding selectivity, the separation selectivity of analyte–CD complexes and the ratio of electrophoretic mobility of the analytes in free, and complexed forms. Using positional isomers of benzoic acids and phenoxy acids as test analytes and α‐CD as a selector, the observed separation selectivity shapes were found to be in excellent agreement with the predicted separation selectivities.  相似文献   

11.
The chiral separation of halogenated amino acids by ligand-exchange CE is described. Halogenated amino acids attracted increasing interest in recent years because of their physiological activities. Different chiral selectors, as there are L-4-hydroxyproline, L-histidine, and N-alkyl derivatives of L-4-hydroxyproline in form of their copper(II) complexes, are compared for their chiral recognition ability for halogenated amino acids. The influence of various parameters, such as selector concentration, pH, organic modifier, and field strength, on the resolution was investigated. All halogenated amino acids investigated were baseline-separated under optimized conditions.  相似文献   

12.
Summary Capillary electrophoresis (CE) has been successfully applied to the separation of the enantiomers of venlafaxine (Vx) and its main active metabolite,O-desmethylvenlafaxine (ODV), by use of a mixture of two cyclodextrins (CDs) added to the background electrolyte (BGE). The use of carboxymethylated β-cyclodextrin (CMB) enabled the enantioseparation of both Vx and ODV, although separation of all four enantiomers was not achieved. Addition of a second cyclodextrin (α-CD) to the BGE resulted in the simultaneous resolution of the enantiomers of both compounds. In this system, α-CD enabled discrimination between Vx and ODV whereas CMB enabled the enantioseparation. Resolution was strongly influenced by the ratio of the concentrations of the two complexing agents. Baseline resolution of Vx and ODV was achieved in an uncoated capillary. Addition of organic modifiers to the BGE had a substantial effect on the interaction of the analytes with the α-CD.  相似文献   

13.
Summary Physiological investigations of solute transport in plants affords knowledge of solute distribution between different tissues. Capillary electrophoresis using indirect UV and laser induced fluorescence (LIF) detection is demonstrated as a useful technique for the simultaneous determination of inorganic anions, amino acids and carboxylic acids in plant samples. Cell sap obtained from plant tissues as well as simple ethanolic or aqueous plant extracts can be analysed directly without any pretreatment. This matrix stability and the very small volumes required allow fast determinations of various compounds in small plant tissue sections. In the case of carboxylic acids, resolution can be optimized using calcium for selective complexation of some of the compounds. Selective and sensitive determination of amino acids is possible using precolumn derivatisation with orthophthaldialdehyde (OPA) and laser induced fluorescence detection. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

14.
Nicotine (NC) and its related compounds (cotinine (CN), nornicotine (NN), anatabine (AT) and anabasine (AB)) were simultaneously enantioseparated by CE using a capillary with amino groups and sulfated β‐CD as a chiral selector. The optimum running conditions were found to be 30 mM acetate buffer (pH 5.0) containing 8% sulfated β‐CD with an applied voltage of +15 kV at 30°C using direct detection at 260 nm. Using a capillary coated with amino groups, the EOF migrates toward the positive pole. However, when sulfated β‐CD was added to the BGE, it was found that the EOF migrated toward the negative pole due to ionic adsorption of sulfated β‐CD to amino groups on the capillary inner wall. All the cationic analytes migrated as anions, suggesting that they formed stable anionic complexes with sulfated β‐CD. With this system and a simple pretreatment with mini‐cartridges, NC alkaloids in five cigarette samples were enantioseparated. As a result, each of the compounds except for CN was detected. In the case of NC, only (S)‐NC was detected (more than 99.9%), but in the case of NN, AT and AB, the ratios of (S)‐isomer to total isomers were in the ranges 58–70, 81–85 and 59–65%, respectively. On the other hand, only NC was detected in cigarette smoke and the ratio of (S)‐ and (R)‐NCs was 96:4. The amounts of NC alkaloids in cigarettes suggest that the production of (R)‐NC resulted from racemization due to the high temperature/burning of the cigarette.  相似文献   

15.
Lin CE  Liao WS  Cheng HT  Kuo CM  Liu YC 《Electrophoresis》2005,26(20):3869-3877
In this study, enantioseparations of five phenothiazines, including promethazine, ethopropazine, trimeprazine, methotrimeprazine, and thioridazine, in CD-modified CZE using dual CD systems consisting of randomly sulfate-substituted CD (MI-S-beta-CD) and a neutral CD as chiral selectors in a citrate buffer (100 mM) at pH 3.0 were investigated. The results indicate that MI-S-beta-CD is an excellent chiral selector for enantioseparation of ethopropazine. The enantiomers of promethazine can also be baseline-resolved with MI-S-beta-CD at concentrations in the range of 0.5-1.0% w/v. On the other hand, thioridazine and trimeprazine interact strongly with neutral CDs. As a result, the enantioselectivity of these two phenothiazines is remarkably and synergistically enhanced with increasing the concentration of neutral CDs in the presence of MI-S-beta-CD and simultaneous enantioseparations of these phenothiazines, except for methotrimeprazine, could favorably be achieved with the use of dual CD systems. Moreover, by varying the concentration of beta-CD or gamma-CD at a fixed concentration of MI-S-beta-CD (0.75% w/v) reversal of the enantiomer migration order of promethazine occurred. This may be attributable to the opposite effects of charged and neutral CDs on the mobility of the enantiomers of promethazine.  相似文献   

16.
An ephedrine‐based chiral ionic liquid, (+)‐N,N‐dimethylephedrinium‐bis(trifluoromethanesulfon)imidate ([DMP]+[Tf2N]), served as both chiral selector and background electrolyte in nonaqueous capillary electrophoresis. The enantioseparation of rabeprazole and omeprazole was achieved in acetonitrile–methanol (60:40 v/v) containing 60 mm [DMP]+[Tf2N]. The influences of separation conditions, including the concentration of [DMP]+[Tf2N], the electrophoretic media and the buffer, on enantioseparation were evaluated. The mechanism of enantioseparation was investigated and discussed. Ion‐pair interaction and hydrogen bonding may be responsible for the main separation mechanism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
报道了以未涂层融硅石英毛细管(50 cm×75 μm)为分离柱,5 mmol/L NaOH+10 mmol/L Citric acid +3 mmol/L H3BO3+10 mmol/L β-CD (pH 3.5) 为电泳介质,分离电压12 kV,检测电压0.80 V,建立了朴尔敏对映体拆分的高效毛细管电泳-方波安培检测方法.对缓冲溶液的种类、浓度、pH、分离电压对拆分效果的影响进行了讨论,并对拆分机理进行了探讨.  相似文献   

18.
An original capillary electrophoretic method has been developed and applied for the enantioselective analysis of the antiparkinson drug biperiden in pharmaceutical formulations, using a modified cyclodextrin as the chiral selector. Baseline enantioseparation of the racemic compound was achieved in less than 7 min using an uncoated fused silica capillary (50 μm i.d. and 48.5, 40.0 cm, total and effective length, respectively), filled with a background electrolyte consisting of a 50 mM phosphate buffer at pH 3.5 supplemented with 3% (w/v) β-cyclodextrin sulphate and applying a voltage of 20 kV, reversed polarity. Samples were injected by pressure (50 mbar, 90 s) at the cathodic end of the capillary and detection wavelength was 195 nm (bandwidth: 10 nm). A simple and fast pre-treatment procedure allowed the complete extraction of the drug from commercial formulations (sustained release tablets and ampoules for injections) without any interference from the matrix. Good linearity was found in the 1–50 μg/mL concentration range; the limit of quantitation was 1 μg/mL and the limit of detection was 0.4 μg/mL. Precision and accuracy were good, with R.S.D. values always lower than 2.8% and a mean recovery value of 101.1%. The method was suitable for the quality control of biperiden in commercial formulations.  相似文献   

19.
New single‐isomer, cationic β‐cyclodextrins, including mono‐6‐deoxy‐6‐pyrrolidine‐β‐cyclodextrin chloride (pyCDCl), mono‐6‐deoxy‐6‐(N‐methyl‐pyrrolidine)‐β‐cyclodextrin chloride (N‐CH3‐pyCDCl), mono‐6‐deoxy‐6‐(N‐(2‐hydroxyethyl)‐pyrrolidine)‐β‐cyclodextrin chloride (N‐EtOH‐pyCDCl), mono‐6‐deoxy‐6‐(2‐hydroxymethyl‐pyrrolidine)‐β‐cyclodextrin chloride (2‐MeOH‐pyCDCl) were synthesized and used as chiral selectors in capillary electrophoresis for the enantioseparation of carboxylic and hydroxycarboxylic acids and dansyl amino acids. The unsubstituted pyCDCl exhibited the greatest resolving ability. Most analytes were resolved over a wide range of pH from 6.0 to 9.0 with this chiral selector. In general, increasing pH led to a decrease in resolution. The effective mobilities of all the analytes were found to decrease with increasing CD concentration. The optimal concentration for most carboxylic acids and dansyl amino acid was in the range 5–7.5 mM and >15 mM for hydroxycarboxylic acids. 1H NMR experiments provided direct evidence of inclusion in the CD cavity.  相似文献   

20.
In this study, the partial filling technique on both polycationic polymer hexadimethrine bromide (HDB) modified capillary and eCAP neutral capillary were systematically compared in order to enhance the enantioseparation ability of bromobalhimycin as CE additive. The separation conditions, such as pH, the plug length, and the concentration of bromobalhimycin, etc., were optimized in order to obtain satisfactory separations. As expected, for all tested 28 N‐benzoylated amino acids, up to five times higher enantioresolutions were obtained on the eCAP neutral capillary compared to that on the polycationic polymer hexadimethrine bromide modified capillary. Moreover, 26 of 28 tested racemic compounds were almost baseline‐ resolved without observing any interference from the front of the plug of bromobalhimycin. Although the limitation of longer running time on the neutral capillary, it allows the use of higher content of bromobalhimycin in the running buffer without any interference on the detection of analytes when enantioseparations are more difficult to obtain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号