首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 789 毫秒
1.
New complexes of yttrium and lanthanum bromides and erbium chloride with carbamide (Ur), [Y(Ur)4(H2O)4]Br3 (I) and [La(Ur)4(H2O)4]Br3 (II), [La(Ur)6(H2O)2]Br3 (III), and [Er(Ur)6Cl]Cl2 (IV), are synthesized and studied by X-ray diffraction analysis. In structures I?CIII, the coordination of the ligands (water and carbamide) by the metal occurs through the oxygen atoms. The coordination polyhedron of the rare-earth metal atoms is a distorted square antiprism (coordination number 8), and the bromide ions are not included into the internal coordination sphere of the complexes. In compound IV, the internal coordination sphere of the complex includes six carbamide molecules and one chloride ion, and the coordination polyhedron of Er is a distorted pentagonal bipyramid (coordination number 7). Specific features of the structures of the crystalline carbamide derivatives of chlorides, bromides, and iodides of the considered rare-earth metals are compared. A distortion of the planar structure of some carbamide ligands, depending on their number in the complex cation and on the nature of the complex, is observed.  相似文献   

2.
New acetamide and carbamide complexes LnI3 · 4Ur · 4H2O (Ln = La, Eu, Dy, Ho, Y; Ur is carbamide) and LnI3 · 4AA · 4H2O (Ln = Nd, Eu, Dy, Ho, Y; AA is acetamide) are synthesized. The complexes are characterized by the data of chemical analysis, IR spectroscopy, and X-ray diffraction analysis. The ligands (water, carbamide, and acetamide molecules) are coordinated by the rare-earth element atoms through the oxygen atom, and the coordination polyhedron is a distorted square antiprism. The iodide ions are not coordinated and are located in the external sphere. The structural characteristics of the complexes are compared in the series [Ln(L)4(H2O)4]I3 (Ln = La, Nd, Eu, Gd, Dy, Ho, Er; L = AA, Ur).  相似文献   

3.
Data on the synthesis and the IR spectroscopic and X-ray diffraction analyses of new complexes of yttrium chloride with carbamide (Ur), [Y(Ur)4(H2O)4]Cl3 (I) and [Y(Ur)6(H2O)2]Cl3 (II), and with acetamide (AA), [Y(AA)5(H2O)2]Cl3 (III), are presented. The coordination of the ligands occurs through the oxygen atoms. For complexes I and II, the coordination polyhedra of the Y atoms are distorted tetragonal antiprisms. For structure III, the coordination polyhedron of the Y atom is a distorted pentagonal bipyramid. The coordination of four Ur molecules in complex I does not change their planar structure, and two Ur molecules in structure II have the dihedral angle N-C(O)-N different from 180°. The chloride ions are in the external sphere. Many hydrogen bonds are observed in the structures of complexes IIII.  相似文献   

4.
The novel carbamide complexes of gadolinium and erbium iodides of the composition LnI34Ur·4H2O (Ln = Gd, Er; Ur = carbamide) were synthesized and studied by X-ray diffraction and IR spectroscopy. The ligands are coordinated to the central Gd or Er atom through the O atoms of water or carbamide molecules. The coordination polylhedron of Ln atoms is a distorted square antiprism. The iodide ions are not coordinated and lie in the outer sphere.  相似文献   

5.
New complexes of rare earth elements [Ln(DMSO)m(H2O)n][Mo3S7Br7], Ln=Pr, Eu, Tm were synthesized and investigated by X-ray diffraction analysis. In [Pr(DMSO)6(H2O)2]3+ and [Eu(DMSO)7(H2O)]3+, the coordination polyhedra of Ln are distorted, square antiprisms (coordination number is 8); in [Tm(DMSO)6(H2O)]3+, the coordination polyhedron of Ln is a distorted pentagonal bipyramid (coordination number is 7). In all complexes, DMSO is coordinated via oxygen atoms. Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences. Swiss Technological Institute, Zurich, Switzerland. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 6, pp. 1046–1069, November–December, 1995. Translated by L. Smolina  相似文献   

6.
An earlier reported series of the [Ln(Ur)4(H2O)4]I3 (Ln = Y, La, Nd, Eu, Gd, Dy, Ho, Er; Ur = urea) complexes was completed with seven new compounds (Ln = Ce, Pr, Sm, Tb, Tm, Yb, Lu); one of them, [Ce(Ur)4(H2O)4]I3, was studied by X‐ray diffraction. The most striking feature of the [Ln(Ur)4(H2O)4]I3 structures is the presence of two types of coordinated urea molecules. There are two planar symmetric and two non‐planar asymmetric urea molecules. The Ln–O–C bond angles vary in the ranges 163.06–165.71° and 148.42–152.42° for symmetric and asymmetric urea ligands, respectively, correlating with the ionic mode of urea coordination. To elucidate the role of aqua ligands for the urea coordination mode, two water‐free perchlorate complexes, [La(Ur)8](ClO4)3 · 2Ur and [La(Ur)7(OClO3)](ClO4)2 were synthesized and structurally characterized. In these complexes, all urea molecules are planar symmetric; however, both covalent and ionic types of urea coordination with the La–O–C bond angles varying in the 132.4–142.3° and 145.5–159.1° ranges, respectively can be observed.  相似文献   

7.
Two complexes [Ln2(hfga)2(phen)4(H2O)6] · hfga · 2H2O (H2hfga = hexafluoroglutaric acid, phen = 1, 10-phenanthroline, Ln=Tb, 1; Eu, 2) were synthesized under hydrothermal conditions and their structures determined by X-ray crystallography. The complexes consist of dinuclear units with an inversion center. Each Ln(III) is nine-coordinate with two carboxylate oxygens from two hfga ligands, three oxygens from water and four nitrogens from two phen molecules. Two carboxylate groups of one hfga adopt monodentate coordination to Ln(III) as a long bidentate bridge linking two Ln(III) ions to form a dimer. Ln(III) ··· Ln(III) distances of 9.027(3) Å for 1 and 9.043(3) Å for 2 were observed. Both complexes emit strong fluorescence and show characteristic emission of Tb(III) and Eu(III) ions, respectively.  相似文献   

8.
A series of [Ln(CH3CONH2)4(H2O)4]I3 (Ln?=?rare-earth metal) complexes was completed with seven new compounds (Ln?=?Ce, Pr, Sm, Tb, Tm, Yb, Lu); two (Ln?=?Ce, Tm) were studied by X-ray diffraction. The coordination polyhedron of eight oxygen atoms is a distorted square antiprism. No tetrad effect was found for Ln–O bond lengths. The structure is stabilized by a system of intermolecular hydrogen bonds. The most striking feature of the structures is the recently predicted ionic acetamide coordination. The acetamide molecules are non-planar (the Ln–O–C–N torsion angles are 159–170°) and Ln–O–C bond angles vary in the 146.0–156.8° range.  相似文献   

9.
Two new complexes, [Zn(phen)2(H2O)2]2L·H2O (1) and [Cu(phen)(L)(H2O)2]L·3H2O (2), where HL?= 4-aminobenzenesulfonic acid and phen = o-phenanthroline, have been synthesized and their crystal structures determined by X-ray diffraction. In the complexes the Cu(II) and Zn(II) atoms revealed two different coordination environments. Complex 1 consists of a cation [Zn(phen)2(H2O)2]2+, in which Zn(II) is six-coordinated by four nitrogen atoms from two o-phenanthroline molecules and by two water molecules. Complex 2 has two crystallographically unique Cu(II) ions, where Cu(II) ion is five-coordinate with two nitrogen atoms of o-phenanthroline, two water molecules and one sulfonate oxygen atom. The electrochemical behavior and FT-IR of the two compounds have also been studied in detail.  相似文献   

10.
Two new coordination polymers, {Ln2(hqda)3(H2O)4·6H2O}n (H2hqda = hydroquinone-O,O′-diacetic acid, Ln = Dy, 1; Ho, 2), were prepared and characterized by elemental analysis, IR spectroscopy, TG-DTA, fluorescence spectroscopy, and single-crystal X-ray diffraction. The two complexes are isomorphous with similar crystal structures. In 1 and 2, each Ln(III) ion is nine coordinate with seven oxygen atoms from hqda ligands and two oxygen atoms from water molecules. Two adjacent Ln(III) ions are bridged by–COO? groups from hqda ligands in bidentate-bridging and chelating-bridging modes. These building blocks cross link through OOCCH2OC6H4OCH2COO? spacers to form a 2–D network structure. The adjacent 2-D layers are further interlinked by hydrogen bonds to form a 3-D supermolecular structure.  相似文献   

11.
Several new coordination polymers of lanthanide tartrate with three types of topological structures, namely [Ln2(DL-tart)3(H2O)3] · 1.5H2O [Ln = La (1), Nd (2), and Sm (3)], [Ln2(D-tart)3(H2O)2] · 3H2O [Ln = Eu (4), Tb (5), and Dy (6)], and [Lu(C4H4O6)(C4H5O6)] · 2.5H2O (7), have been synthesized by hydrothermal synthesis. X-ray crystallographic analysis reveals that 1 is a unique 3-D network, whereas 5 with a 3-D network and 7 with a 2-D network are isomorphous with their analogs. All lanthanide ions are nine-coordinate through oxygen donors. Four different coordination modes of tartrate occur in these complexes. Luminescence spectra reveal that 4, 5, and 6 emit characteristic luminescence of corresponding lanthanide ions.  相似文献   

12.
The synthesis and results of IR spectroscopy and X-ray diffraction analysis of new complexes of biurete NH2CONHCONH2 (BU) with the composition LnCl3 · 2BU · 4H2O, where Ln = La (I), Pr (II), Ho (III), Er (IV), and Lu (V), are presented. Crystals of complexes I–V include complex cations [Ln(H2O)4(BU)2]3+ and uncoordinated chloride ions. The coordination mode of biurete molecules is bidentate through the oxygen atoms, and upon coordination the BU molecules are transformed from the initial trans to cis configuration. Water molecules are also coordinated through the oxygen atom (the shape of the polyhedron of the Ln atoms is a two-capped trigonal prism). The oxygen atoms of both BU molecules and the oxygen atoms of the first and second water molecules form a trigonal prism, whereas the oxygen atoms of the third and fourth water molecules form two caps of the coordination polyhedron. The coordinated BU molecules are joined with the chloride ions and water molecules of the adjacent complex cations by hydrogen bonds. The degree of conversion of trans-BU to cis-BU in the lanthanide series of complexes of this type is discussed.  相似文献   

13.
The reaction of α-[SiMo12O40]4? with trivalent cations Ln3+ and N-methyl-2-pyrrolidone leads to a series of complexes of formula [Ln(NMP)4(H2O) n ]H[SiMo12O40]?·?2NMP?·?mH2O [where Ln?=?La (1), Pr (2), Nd (3), Sm (4), Gd (5), n?=?4, Ln?=?Dy (6), Er (7), n?=?3. NMP?=?N-methyl-2-pyrrolidone]. The syntheses, X-ray crystal structures, IR, and ESR spectra and thermal properties of the complexes 1, 2, 4, 6, 7 have been reported previously. Here, we report X-ray crystal structures, IR, UV, ESR spectra and thermal properties of the complexes [Nd(NMP)4(H2O)4]H[SiMo12O40]?·?2NMP?·?1.5H2O (3), and [Gd(NMP)4(H2O)4]H[SiMo12O40]?·?2NMP?·?H2O (5). In addition, the electrochemical behaviour of this series of complexes in aqueous solution and aqueous-organic solution has been investigated and systematic comparisons have been made. All these complexes exhibit successive reduction process of the Mo atoms.  相似文献   

14.
4-磺基苯甲酸镍配合物结构多样性与性质研究   总被引:1,自引:0,他引:1  
本文报道2个镍/4-磺基苯甲酸/1,10-邻菲咯啉配合物的合成、表征、结构和性质。配合物[Ni(4-sb)(phen)(H2O)2]·(2H2O) (1)是单核结构,配合物[Ni(phen)3]·(4-Hsb)(OH)(8H2O) (2)是1个阳离子与阴离子复合物。在这2个配合物中金属镍的配位形式均是六配位八面体构型,Ni-N键长相近。2个配合物的扩展结构均为三维网络结构。配合物2中阳离子占据由阴离子与水分子形成的三维网络孔道。配合物2是一个羧基氢未脱去同时又有氢氧根的分子。  相似文献   

15.
Eight isostructural polymeric coordination compounds of the general formula [Ln(DMF)(H2O)4][Ln(DMF)2(H2O)4][M4Te4(CN)12]·DMF·nH2O (Ln = Er, Ho, Gd, or Sm; M = W or Mo) were prepared for the first time by evaporation in air of aqueous solutions containing the cuboidal telluride anionic complex of tungsten [W4Te4(CN)12]6– or molybdenum [Mo4Te4(CN)12]7–, lanthanide chlorides, and dimethylformamide. The resulting polymeric coordination complexes with layered structures were characterized by X-ray diffraction analysis and IR spectra. The magnetic susceptibilities of the gadolinium complexes were measured.  相似文献   

16.
Direct reaction of pyridine-3,5-dicarboxylic acid (H2PDA) and oxalic acid (H2ox) with Ln(ClO4)3 · nH2O under hydrothermal conditions gave three 3-D coordination networks, [Ln(PDA)(ox)0.5(H2O)2] · H2O [Ln = La(1), Nd(2), and Eu(3)]. The complexes were characterized by elemental analysis (EA), X-ray single-crystal diffraction, infrared spectroscopy (IR), and thermogravimetric analysis (TGA). Single crystal X-ray diffractions shows that the compounds are isomorphous and have 3-D framework structures, in which pyridine-3,5-dicarboxylates (PDA2?) link lanthanides to give 2-D layers, which are further fabricated into a 3-D network via bis-bidentate oxalate bridging. Luminescence of 3 is investigated.  相似文献   

17.
Two new 4d–4f heterometallic coordination polymers [AgLn(pydc)2(H2O)3] · x(H2O) [Ln = Eu, x = 1.25 (1); Ln = Tb, x = 1.25 (2); pydc = 2,6-pyridinedicarboxylate] have been synthesized and characterized by elemental analysis, IR spectroscopy, and single crystal X-ray diffraction. Both structures display the same unusual 1-D heterometallic coordination polymer based on Ln building blocks and Ag ions. Thermal stabilities and luminescent properties of 1 and 2 are presented.  相似文献   

18.
Abstract

Coordination polymers (CPs) of mixed-ligand lanthanide complexes [Ln2(1,3-pdta)(TPA)(H2O)2]n·nH2O [Ln?=?La, 1; Ce, 2; Pr, 3; Nd, 4] (1,3-H4pdta = 1,3-propanediaminetetraacetic acid; H2TPA?= terephthalic acid) were hydrothermally synthesized with flexible 1,3-pdta and rigid TPA ligands. Moreover, lanthanide propanediaminetetraacetates [Ln(1,3-Hpdta)(H2O)]2n·nH2TPA·xH2O [Ln?=?Sm, 5; Gd, 6] with multi-layered structures were also obtained. In 14, both 1,3-pdta and TPA coordinate with lanthanide ions through carboxyl oxygen and nitrogen atoms. In 5 and 6, only 1,3-Hpdta coordinates with the central lanthanide ion, where one nitrogen atom in 1,3-Hpdta is protonated, and TPAs are crystallized as H2TPA with the central multi-layered structures of [Ln(1,3-Hpdta)(H2O)]2n through very strong hydrogen bonds [2.504(4) Å]. Solid-state 13C NMR analysis of 1 revealed the coordination of carboxyl groups. However, the methylene groups of 1,3-pdta showed an obvious upfield shift, which can be attributed to the effects of the phenyl ring in TPA ligand. The successful synthesis of these mixed-ligand lanthanides provides a rational design of such lanthanide CPs with flexible and rigid ligands.  相似文献   

19.
Yang  Jin  Ma  Jian-Fang  Wu  Dong-Mei  Guo  Li-Ping  Liu  Jing-Fu 《Transition Metal Chemistry》2003,28(7):788-793
Three new compounds, namely [Mn(phen)2(L)2] · EtOH (1), [Zn(phen)2(H2O)2]2L · 6H2O (2) and [Cd(phen)2(H2O)2]2L · 6H2O (3), where HL = 4-methylbenzenesulfonic acid and phen = o-phenanthroline, have been synthesized, and their crystal structures determined by X-ray diffraction. In the complexes the metal atoms have two different coordination environments. Complex (1) consists of neutral molecules, [Mn(phen)2(L)2], in which MnII is six-coordinated by four nitrogen atoms from two o-phenanthroline molecules and two oxygen atoms from two sulfonate ions. Complexes (2) and (3) are isomorphous, each consisting of cationic species [M(phen)2(H2O)2]2+ [M = Zn (2), Cd (3)], in which MII is six-coordinated by four nitrogen atoms from two o-phenanthroline molecules and two water molecules. The electrochemical behavior and FT-IR of these compounds were also studied in detail.  相似文献   

20.
Data on the synthesis, IR spectra, and X-ray diffraction analysis of the thiocarbamide complexes of europium, holmium, and erbium iodides, [Ln(H2O)9]I3 · 2CS(NH2)2 (Ln = Eu (I), Ho(II), Er (III)), are presented. The crystal structures of the complexes contain nonaaqualanthanide cations (the polyhedron shape is a monocapped tetragonal antiprism), outer-sphere thiocarbamide molecules, and uncoordinated iodide ions. The thiocarbamide molecules form hydrogen bonds with the aqua cations and join them into continuous layers or network ensembles. The thiocarbamide molecules are disordered in the crystal structures of complexes II and III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号