首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This article describes a method for silica coating of Co–Pt alloy nanoparticles prepared in the presence of poly(vinylpyrrolidone) (PVP) as a stabilizer. The Co–Pt nanoparticles were prepared in an aqueous solution at 25–80 °C from CoCl2 (3.0 × 10−4 M), H2PtCl6 (3.0 × 10−4 M), PVP (0–10 g/L), and NaBH4 (4.8 × 10−3–2.4 × 10−2 M). The silica coating was performed for the Co–Pt nanoparticle colloid containing the PVP ([Co] = [Pt] = 3.0 × 10−5 M) at 25 °C in (1/4) (v/v) water/ethanol solution with tetraethoxyorthosilicate (TEOS) (7.2 × 10−5–7.2 × 10−3 M) and ammonia (0.1–1.0 M). Silica particles, which had an average size of 43 nm and contained multiple cores of Co–Pt nanoparticles with a size of ca. 8 nm, were produced at 1.4 × 10−3 M TEOS and 0.5 M ammonia after the preparation of Co–Pt nanoparticles at 80 °C, 5 g/L PVP, and 2.4 × 10−2 M NaBH4. Their core particles were fcc Co–Pt alloy crystallites. Their saturation magnetization was 2.0-emu/g sample, and their coercive field was 12 Oe.  相似文献   

2.
It is found that silver nanoparticles (AgNPs) can further enhance the fluorescence intensity of curcumin (CU) - cetyltrimethylammonium bromide (CTAB) – nucleic acids and improve its anti-photobleaching activity. Under optimum conditions, the enhanced fluorescence intensity is proportion to the concentration of nucleic acids in the range of 2.0 × 10−8–1.0 × 10−6 g mL−1 for fish sperm DNA (fsDNA), 2.0 × 10−8–1.0 × 10−6 g mL−1 for calf thymus DNA (ctDNA), 1.0 × 10−8–1.0 × 10−6 g mL−1 for yeast RNA (yRNA), and their detection limits (S/N = 3) are 8.0 ng mL−1, 10.5 ng mL−1 and 5.8 ng mL−1, respectively. This method is used for determining the concentration of DNA in actual sample with satisfactory results. The interaction mechanism is also studied.  相似文献   

3.
Polyethylene oxide (PEO)–potassium hydroxide (KOH)-based alkaline solid polymer electrolyte films have been prepared by using methanol as solvent. The highest room temperature ionic conductivity of (2.1 ± 0.5) × 10−8 S cm−1 was achieved for the composition of 70 wt% PEO:30 wt% KOH. The addition of plasticizer, ethylene carbonate, propylene carbonate, or polyethylene glycol to the highest conductivity of PEO–KOH system helps to increase the ambient ionic conductivity to the order of 10−6–10−4 S cm−1. The log σ vs 1/T plot of PEO–KOH showed a small conductivity decrease at 50–60 °C range. The small decrease and the hysteresis that occur during the heating–cooling cycle was overcome by the presence of the plasticizer. X-ray diffraction observation supports the conductivity results.  相似文献   

4.
Reactive cosputtering is employed to prepare high-permittivity HfTiO gate dielectric on n-Ge substrate. Effects of Ge-surface pretreatment on the interface and gate leakage properties of the dielectric are investigated. Excellent performances of Al/HfTiO/GeO x N y /n-Ge MOS capacitor with wet–NO surface pretreatment have been achieved with a interface-state density of 2.1×1011 eV−1 cm−2, equivalent oxide charge of −7.67×1011 cm−2 and gate leakage current density of 4.97×10−5 A/cm2 at V g =1 V.  相似文献   

5.
A simple, sensitive, and rapid method based on ion association, for the determination of FLD has been developed. Flutamide (FLD) can react with Cu(II) to form 1:1 cationic chelate at pH 2.2–7.0 Mclivaine buffer medium, which can further react with anionic surfactants (AS) such as sodium dodecyl sulfate (SDS), sodium lauryl sulfonate (SLS) and sodium dodecylbenzene sulfonate (SDBS) to form 1:1 ion-association complexes. As a result, the resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering (FDS) were enhanced to the highest degree. The maximum RRS, SOS and FDS wavelengths of three ion-association complexes were located at 345/345 nm, 610/305 nm and 430/860 nm, respectively. The increments of scattering intensity (ΔI) were directly proportional to the concentration of FLD in certain ranges. The detection limits (3σ) of FLD for SDS, SLS and SDBS systems were 1.9 ng ml−1, 2.1 ng ml−1 and 2.2 ng ml−1(RRS method), 2.4 ng ml−1, 2.7 ng ml−1 and 2.6 ng ml−1 (SOS method) and 2.3 ng ml−1, 2.4 ng ml−1 and 2.5 ng ml−1 (FDS method), separately. The sensitivity of RRS method was higher than those of FDS and SOS methods. The optimum conditions of RRS method and the influence factors, the composition and the reaction mechanism have been discussed. Since the method is highly selective, it does not interference concomitant substances. These methods were applied successfully for the determination of FLD in pharmaceutical formulation and urine samples.  相似文献   

6.
Two methods of preparation of the devices for visualization of pulsed and continuous near-IR (near infrared) are described and the results of conversion of pulsed and continuous IR (800–1360 nm) laser radiation into the visible range of spectra (400–680 nm) by using a transparent substrate covered with the particles (including nanoparticles) of effective nonlinear materials of GaSe x S1 − x (0.2 ≤ x ≤ 0.8) are presented. Converted light can be detected in transmission or reflection geometry as a visible spot corresponding to the real size of the incident laser beam. Developed device structures can be used for checking if the laser is working or not, for optical adjustment, for visualization of distribution of laser radiation over the cross of the beam and for investigation of the content of the laser radiation. Low energy (power density) limit for visualization of the IR laser pulses with 2–3 ps duration for these device structures are: between 4.6–2.1 μJ (3 × 10−4−1 × 10−4 W/cm2) at 1200 nm; between 8.4–2.6 μJ (4.7 × 10−4−1.5 × 10−4 W/cm2) at 1300 nm; between 14.4–8.1 μJ (8.2 × 10−4–4.6 × 10−4 W/cm2) at 1360 nm. Threshold damage density is more than 10 MW/cm2 at λ = 1060 nm, pulse duration τ = 35 ps. The results are compared with commercially existing laser light visualizators.  相似文献   

7.
A simple and sensitive chemiluminescence (CL) method coupled with flow-injection technique is proposed to determine naproxen (NAP). The method is based upon the enhancement of the weak CL signal arising from the reaction of Ce(IV) and Na2S2O4 with Eu3+ to form the Eu3+-Ce(IV)-Na2S2O4 system. The CL intensity was significantly increased by the introduction of NAP into this system in the presence of silver nanoparticles (Ag NPs). Examination of the recorded UV–vis spectra and fluorescence spectra indicated that the energy of the intermediate SO2*, which originated from the redox reaction of Ce(IV) and Na2S2O4, was transferred to Eu3+ via NAP and that the process was accelerated by Ag NPs due to their catalytic activity. Under the optimum conditions, the CL intensity was increased with increasing NAP concentration and the correlation was linear (r = 0.9992) over the NAP concentration range of 1–420 ng mL−1. The limit of detection (LOD) was 0.11 ng mL−1 with a relative standard deviation (RSD) of 1.15% for 5 replicate determinations of 200 ng mL−1 NAP. The method was successfully applied to determine NAP in pharmaceutical and biological samples.  相似文献   

8.
A nanoparticle TiO2 solid-state photoelectrochemical cell utilizing as a solid electrolyte of poly(acrylonitrile)–propylene–carbonate–lithium perchlorate (PAN–PC–LiClO4) has been fabricated. The performance of the device has been tested in the dark and under illumination of 100-mW cm−2 light. A nanoparticle TiO2 film was deposited onto indium tin oxide-covered glass substrate by controlled hydrolysis technique assisted with spin-coating technique. The average grain size for the TiO2 film is 76 nm. LiClO4 salt was used as a redox couple. The room temperature conductivity of the electrolyte is 4.2 × 10−4 S cm−1. A graphite electrode was prepared onto a glass slide by electron beam evaporation technique. The device shows the rectification property in the dark and shows the photovoltaic effect under illumination. The best J sc and V oc of the device were 2.82 μA cm−2 and V oc of 0.58 V, respectively, obtained at the conductivity of 4.2 × 10−4 S cm−1 and intensity of 100 mW cm−2. The J sc was improved by about three times by introducing nanoparticle TiO2 and by using a solid electrolyte of PAN–PC–LiClO4 replacing PVC–PC–LiClO4 in the device. The current transport mechanism of the cell is also presented in this paper.  相似文献   

9.
Monodispersed platinum (Pt) nanoparticles were synthesized from reducing hydrated hydrogen hexachloroplatinic acid (H2PtCl6·nH2O) with ethanol in the presence of polyvinylpyrrolidone (PVP) as a steric stabilizer. Concentration of both PVP and ethanol influenced the aggregate structure and crystallite size of the nanoparticles. When the molar ratio of monomeric unit of PVP to Pt, i.e., [PVP]/[Pt], was one, the synthesized Pt particles coagulated pronouncedly into an inter-connected particulate network or self-organized into spherical superstructures with an apparent diameter ranging from 60 to 80 nm, depending on the ethanol concentration. The geometry and structure of these complex aggregates were characterized by fractal analysis. Fractal dimensions of 2.13–2.23 in three dimensions were determined from the Richardson’s plot, which suggests that a reaction-limited cluster–cluster aggregation model (RCLA) was operative. The Pt colloids became apparently more stable when the [PVP]/[Pt] ratio was increased greater than 20. Crystallite size of the Pt nanoparticles was found to increase linearly with the ethanol concentration as the [PVP]/[Pt] was held at one. This suggests that the reduction rate of PtCl6 2− ions in solution is critically important to the synthesized crystallite size.  相似文献   

10.
IR spectroscopy is used for a comparative analysis of the trans-isomerization of double bonds in hydrocarbon residuals of lactic and hydrogenated lipids. The maximum of the absorption band of the trans-isomers for all the lipid samples is found to lie at 965 cm−1. An absorption band at 970 cm−1 is discovered in the spectra of the lactic lipids near the analytic band of the trans-isomers at 965 cm−1. Based on a gaussian approximation for their absorption spectral bands, the trans-isomer content in the lactic lipid samples is 10–11%. The absorption by lipid molecules at 970 cm−1 has to be taken into account when determining the trans-isomer content of fat and oil products. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 138–142, January–February, 2009.  相似文献   

11.
S. Ramesh  Lim Jing Yi 《Ionics》2009,15(4):413-420
Fourier transform infrared spectroscopy studies have been conducted to investigate the interaction among components in a system of high molecular weight polyvinylchloride (PVC)–lithium trifluoromethanesulfonate (LiCF3SO3) incorporated with different type of plasticizers, namely, ethylene carbonate (EC), propylene carbonate (PC), and dibutylphthalate (DBP). Interaction between PVC and LiCF3SO3 was confirmed by C–H rocking mode at 1,255 cm−1 for PVC shift to 1,252 cm−1 in PVC–LiCF3SO3. The plasticizers’ carbonyl (C=O) oxygen atom which carries lone pair electrons interact with Li+ of LiCF3SO3 and methine hydrogen of PVC in LiCF3SO3–plasticizer system and PVC–plasticizer system, respectively. Changes in peaks assigned to 1,264 cm−1 (ν as(SO3)), 1,033 cm−1 (ν s(SO3)), 1,181 cm−1 (ν as(CF3)), 1,230 cm−1 (ν s(CF3)), 765 cm−1 (δ s(CF3)), 644 cm−1 (δ s(SO3)), 578 cm−1 (δ as(CF3)), and 519 cm−1 (δ as(SO3)) indicate the occurrence of complexation in the PVC–LiCF3SO3 system, LiCF3SO3–plasticizer system, and PVC–LiCF3SO3–plasticizer system.  相似文献   

12.
Diacetylene monomer containing p-nitrophenyl azobenzene moiety (NADA) was synthesized. Silver nanoparticles with different concentrations were adulterated in the above polymerized NADA (PNADA) films and the third-order nonlinear optical properties were investigated in detail. UV–vis spectra and transmission electron microscopy were used to confirm the formation of PNADA/Ag nanocomposite films. The silver nanoparticles (average size of 10 nm) were well dispersed in the polymer films. The value of the nonlinear refractive index n 2 for PNADA films (8.48×10−15 cm2/W) was much higher than that of pure polydiacetylene films. Further, the introduction of silver nanoparticles into the PNADA polymer films led to the further enhancement of nonlinear optical properties. The maximum value of n 2 for PNADA/Ag nanocomposite films could be 11.6×10−15 cm2/W. This enhancement should be ascribed to the surface plasmon resonance of silver nanoparticles.  相似文献   

13.
In pH 1.8 ∼ 2.8 weak acid medium, polyvinylpyrrolidone (PVP) and Eosin Y reacted to form complex that could result in Eosin Y (EY) fluorescence quenching. The maximum quenching wavelength was at 542 nm. The fluorescence quenching (ΔF) was proportional to the concentration of polyvinylpyrrolidone in a certain range. The linear range, the correlation coefficient and the detection limit were 0.33 ∼ 2.0 μg•mL−1, 0.9994 and 99.6 ng•mL−1, respectively. The influences of the coexistence substances were tested and the results showed that the method had good selectivity. Therefore, a new method based on fluorescence quenching of eosin Y by PVP for the determination of trace PVP was developed. The method was sensitive, simple and rapid, which was applied to the determination of trace PVP in the beer with satisfactory results. The reaction mechanism was also discussed.  相似文献   

14.
In the paper the dependence of the photorefraction (PhR) in LiNbO3 and LiNbO3−Fe (0.1 wt%, 0.3wt%) crystals on light intensity (within 1016–1023 quanta·cm−2·s−1 at wavelengths 496.5 nm and 600 nm) and temperature (in the region 100–500 K) is studied. For all the crystals the limiting values of PhR are similar and atT=293 K Δn sat lim ≈3·10−3. In LiNbO3 the temperature dependence of PhR in the range 100–500 K requires to take into account at least two trapping centres.  相似文献   

15.
We present the results of studies of the nonlinear optical properties of Pd, Ru, and Au nanoparticles. We studied the nonlinear refraction and nonlinear absorption of suspensions of these nanoparticles at 1064-nm wavelength. A relatively strong nonlinear absorption of the Pd nanoparticles was observed in the case of 1064-nm, 50-ps pulses (β=2×10−9 m W−1). The Ru and Pd nanoparticles showed weak negative nonlinear refraction (γ∼−(6–8)×10−16 m2 W−1) in this spectral range. In the case of the Au nanoparticles, a saturated absorption at 532 nm dominated over other nonlinear optical processes.  相似文献   

16.
We report an experimental investigation of the non-steady-state photoelectromotive force in nanostructured GaN within porous glass and polypyrrole within chrysotile asbestos. The samples are illuminated by an oscillating interference pattern created by two coherent light beams and the alternating current is detected as a response of the material. Dependences of the signal amplitude versus temporal and spatial frequencies, light intensity, and temperature are studied for two wavelengths λ=442 and 532 nm. The conductivity of the GaN composite is measured: σ=(1.1–1.6)×10−10 Ω−1 cm−1 (λ=442 nm, I 0=0.045–0.19 W/cm2, T=293 K) and σ=(3.5–4.6)×10−10 Ω−1 cm−1 (λ=532 nm, I 0=2.3 W/cm2, T=249–388 K). The diffusion length of photocarriers in polypyrrole nanowires is also estimated: L D=0.18 μm.  相似文献   

17.
We present a one-step electrochemical method to produce water-based stable carbon nano colloid (CNC) without adding any surfactants at the room temperature. The physical, chemical, and thermal properties of CNC prepared were characterized by using various techniques, such as particle size analyzer, zeta potential meter, TEM, XRD, FT-IR, turbidity meter, viscometer, and transient hot-wire method. The average primary size of the suspended spherical-shaped nanoparticles in the CNC was found to be ∼15 nm in diameter. The thermal conductivity of CNC compared with that of water was observed to increase up to ∼14% with the CNC concentration of ∼4.2 wt%. The CNC prepared in this study was considerably stable over the period of 600 h. With the assistance of FT-IR spectroscopy analysis, we confirmed the presence of carboxyl group (i.e., O–H stretching (3,458 cm−1) and C=O stretching (1,712 cm−1)) formed in the outer atomic layer of carbon nanoparticles, which (i) made the carbon particles hydrophilic and (ii) prevented the aggregation among primary nanoparticles by increasing the magnitude of zeta potential over the long period.  相似文献   

18.
Chromium is an important industrial metal used in various products/processes. Remediation of Cr contaminated sites present both technological and economic challenges, as conventional methods are often too expensive and difficult to operate. In the present investigation, Zero-valent iron (Fe0) nanoparticles were synthesized, characterized, and were tested for removal of Cr(VI) from the soil spiked with Cr(VI). Fe0 nanoparticles were synthesized by the reduction of ferric chloride with sodium borohydride and were characterized by UV–Vis (Ultra violet–Visible) and FTIR (Fourier transform infrared) spectroscopy. The UV–Vis spectrum of Fe0 nanoparticles suspended in 0.8% Carboxymethyl cellulose showed its absorption maxima at 235 nm. The presence of one band at 3,421 cm−1 ascribed to OH stretching vibration and the second at 1,641 cm−1 to OH bending vibration of surface-adsorbed water indicates the formation of ferrioxyhydroxide (FeOOH) layer on Fe0 nanoparticles. The mean crystalline dimension of Fe0 nanoparticles calculated by XRD (X-ray diffraction) using Scherer equation was 15.9 nm. Average size of Fe0 nanoparticles calculated from TEM (Transmission electron microscopy) images was found around 26 nm. Dynamic Light Scattering (DLS) also showed approximately the same size. Batch experiments were performed using various concentration of Fe0 nanoparticles for reduction of soil spiked with 100 mg kg−1 Cr(VI). The reduction potential of Fe0 nanoparticles at a concentration of 0.27 g L−1 was found to be 100% in 3 h. Reaction kinetics revealed a pseudo-first order kinetics. Factors like pH, contact time, stabilizer, and humic acid facilitates the reduction of Cr(VI).  相似文献   

19.
Structure in the Raman scattering spectra of near-surface n-GaAs layers (n=2×1018 cm−3) implanted with 100 keV B+ ions in the dose range 3.1×1011–1.2×1014 cm−2 is investigated. The qualitative and quantitative data on the carrier density and mobility and on the degree of amorphization of the crystal lattice and the parameters of the nanocrystalline phase as a result of ion implantation are obtained using a method proposed for analyzing room-temperature Raman spectra. Fiz. Tverd. Tela (St. Petersburg) 41, 1495–1498 (August 1999)  相似文献   

20.
Infrared (IR) and UV spectra of ternary Li2O–CuO–P2O5 glasses in two series Li2O(65−X)%–CuO(X%)–P2O5(35%), X = 20, 30, 40 and Li2O(55−X)%–CuO(X%)–P2O5(45%), X = (10, 20, 30) were studied. Infrared (IR) investigations showed the metaphosphate and pyrophosphate structures and with increase of CuO content in metaphosphate glass, the skeleton of metaphosphate chains is gradually broken into short phosphate groups such as pyrophosphate. IR spectra showed one band at about 1,220 and 1,260 cm−1 for P2O5(35%) and P2O5(45%) series, respectively, assigned to P=O bonds. For CuO additions ≤20 mol%, the glasses exhibit two bands in the frequency range 780–720 cm−1 which are attributed to the presence of two P–O–P bridges in metaphosphate chain. But for CuO addition ≥30 mol%, the glasses exhibit only a single band at 760 cm−1 which is assigned to the P–O–P linkage in pyrophosphate group. In optical investigations, absorption coefficient versus photon energy showed three regions: low energy side, Urbach absorption, and high energy side. In Urbach’s region, absorption coefficient depends exponentially on the photon energy. At high energy region, optical gap was calculated and investigations showed indirect transition in compounds and decreases in optical gap with increases of copper oxides contents that is because of electronic transitions and increasing of nonbridging oxygen content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号