首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a diode-laser-based spectrometer, operating at a wavelength of 2 μm, which enables for simultaneous measurements of CO2 and H2O concentrations in gaseous mixtures with high precision and accuracy. We implemented the very simple approach of a direct measurement of absorption in a multiple reflection cell with a pathlength of 50 m. Gas concentration is simply retrieved from the integrated absorbance, without using calibration cells. The spectrometer is equipped with single-mode optical fibers in order to probe remote environments. The possible application in volcanic areas will be discussed. We also investigated the possibility to measure the isotopic ratio 13CO2/12CO2, which is another relevant parameter for monitoring volcanic activity.  相似文献   

2.
Heat treatment with high-pressure H2O vapor was applied to improve interface properties of SiO2/Si and passivate the silicon surface. Heat treatment at 180–420 °C with high-pressure H2O vapor changed SiOx films, 150 nm thick formed at room temperature by thermal evaporation in vacuum, into SiO2 films with a Si-O-Si bonding network similar to that of thermally grown SiO2 films. Heat treatment at 130 °C with 2.8×105 Pa H2O for 3 h reduced the recombination velocity for the electron minority carriers from 405 cm/s (as-fabricated 150-nm-thick SiOx/Si) to 5 cm/s. Field-effect passivation was demonstrated by an additional deposition of defective SiOx films on the SiO2 films formed by heat treatment at 340 °C with high-pressure H2O vapor. The SiOx deposition reduced the recombination velocity from 100 cm/s to 48 cm/s. Received: 1 March 1999 / Accepted: 28 March 1999 / Published online: 24 June 1999  相似文献   

3.
A swept-wavelength source is created by connecting four elements in series: a femtosecond fiber laser at 1.56 μm, a non-linear fiber, a dispersive fiber and a tunable spectral bandpass filter. The 1.56-μm pulses are converted to super-continuum (1.1–2.2 μm) pulses by the non-linear fiber, and these broadband pulses are stretched and arranged into wavelength scans by the dispersive fiber. The tunable bandpass filter is used to select a portion of the super-continuum as a scan-wavelength output. A variety of scan characteristics are possible using this approach. As an example, an output with an effective linewidth of approximately 1 cm-1 is scanned from 1350–1550 nm every 20 ns. Compared to previous scanning benchmarks of approximately 1 nm/μs, such broad, rapid scans offer new capabilities: a gas sensing application is demonstrated by monitoring absorption bands of H2O, CO2, C2H2 and C2H6O at a pressure of 10 bar. Received: 5 August 2002 / Revised version: 23 September 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +1-608/265-2316, E-mail: ssanders@engr.wisc.edu  相似文献   

4.
This paper describes the application of parallel high-throughput experimentation based on FTIR spectral imaging to a tolerance study for NOx storage and reduction (NSR) catalysts with respect to CO2 and H2O in the feed. It was found that both gases decrease the storage capacity of platinum/barium based NSR catalysts, with H2O having a stronger effect than CO2.  相似文献   

5.
A new detection method for ammonia in high concentration of CO2 and H2O is reported, which uses a wavelength modulated photoacoustic spectrometer based on a near-infrared tunable erbium-doped fiber laser in combination with an optical fiber amplifier. The multi-wavelength (1522.44 nm, 1522.94 nm and 1545.05 nm) photoacoustic signal measurement is established to detect multi-spectrum signal in samples. The problem of ammonia detection in high concentration of CO2 and H2O is resolved at atmospheric pressure. The minimum detection limit of 16 ppb (signal-to-noise ratio = 1) in simulated breath samples (5.3% CO2 and 6.2% H2O (100% relative humidity at 37°C)) is achieved.  相似文献   

6.
A diode laser spectrometer was used in the laboratory to study H2O and CO2 line intensities and self-broadening coefficients around 1.877 μm. The spectral region ranging from 5327 cm-1 to 5329 cm-1, which is suitable for the in situ sensing of water vapor and carbon dioxide in the Martian atmosphere, was studied using a distributed feedback GaInSb diode laser from Nanoplus GmbH. We have studied one line from the (011)←(000)band of H2O and two lines from the (0112)I←(000) band of CO2. The results of intensity and self-broadening measurements are compared to available databases, ab initio calculations and previous experimental determinations. Finally, we discuss the current development of the tunable diode laser absorption spectrometer instrument, a laser diode sensor devoted to the in situ measurement of H2O and CO2 in the Martian atmosphere. PACS 07.57.Ty; 07.87.+v  相似文献   

7.
The design of an electron impact spectrometer for use in the study of inner-shell electric-dipole-forbidden transitions is described. The use of the spectrometer to investigate spin-forbidden transitions to inner-shell excited states of CO2, COS, CS2, N2O and C2H2 is reported. For all these molecules, excitation of inner-shell triplet states has been observed.  相似文献   

8.
A near-infrared tunable diode laser spectrometer called TDLAS has been developed that combines telecommunication-type as well as new-generation antimonide laser diodes to measure C2H2, H2O, CO2 and their isotopologues in the near infrared. This sensor is devoted to the in situ analysis of the soil of the Martian satellite PHOBOS, within the framework of the Russian space mission PHOBOS-GRUNT. In the first part of the paper, we report accurate spectroscopic measurements of C2H2 and 13C12CH2 near 1.533 μm, of H2O and CO2 at 2.682 μm and of the isotopologues 13C16O2 and 16O12C18O near 2.041 μm and H2 17O, H2 18O and HDO near 2.642 μm. The achieved line strengths are thoroughly compared to data from molecular databases or from former experimental determinations. In the second part of the paper, we describe the TDLAS spectrometer for the PHOBOS-GRUNT mission.  相似文献   

9.
The paper presents the results of a long-term measurement series using hermetic containers to make more precise quantitative estimation of the generation rates and radioactivity of the gas in a drum of low and intermediate level radioactive waste (L/ILW) packages. Development of special preparation lines and isotope-analytical measurements of the headspace gas samples were performed in the ATOMKI. Stable isotope measurements were executed from the CO2 and CH4 fractions by stable isotope ratio mass spectrometer. Noble gas (He) measurements were done by noble gas mass spectrometer. The tritium content of the vapour, H2 and CH4 fractions was measured in H2O chemical form by a low background liquid scintillation counter. The 14C content of the CO2 and CH4 fractions of the headspace gas samples was measured by a low background gas proportional counter system.  相似文献   

10.
Carbon dioxide (CO2) induced pressure broadening coefficients of water vapor (H2O) lines have been determined using a terahertz time-domain spectrometer (TDS). Thirty-two rotational transitions of H2O were observed in the spectral range of 18– (550–3050 GHz) for the first time. Using TDS allows one to measure absorption spectra with one order of magnitude better precision than Fourier transform spectrometer in this frequency region. The precision of our broadening coefficient measurements was 2.4% in average. The measured CO2 induced pressure broadening coefficients are compared to those calculated by the complex Robert–Bonamy formalism. The difference between the measurement and the theoretical estimation was in the range of -10.7% to +19.0% confirming the credibility of the theoretical approach. The impact on retrieval of water vapor abundance was examined by performing inversion analysis on H2O spectra of Venus atmosphere obtained with the Submillimeter Wave Astronomy Satellite. In this example case, the retrieved water vapor mixing ratio reduces by half at the altitude region of 70–85 km when applying the newly measured broadening coefficient compared to the air-broadening coefficient, and changes by 5% compared to that estimated by the complex Robert–Bonamy formalism.  相似文献   

11.
Basic magnesium carbonate (Mg5(CO3)4(OH)2·4H2O) microrods with a surface structure of “house of cards” have been synthesized without any alkaline reagent, using rod-like particles, magnesium carbonate trihydrate, as templates. The product was characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The transformation process from rod-like MgCO3·3H2O particles to Mg5(CO3)4(OH)2·4H2O microrods with a surface structure of “house of cards” was recorded. Preliminary discussions on possible growth mechanisms of Mg5(CO3)4(OH)2·4H2O microrods are also proposed in this paper.  相似文献   

12.
Inelastic neutron scattering spectra at 17 meV and 68 meV incident energies of molecular hydrogen adsorbed on vapour deposited substrates of pure CO2, 90:10 and 50:50 CO2:Kr are reported. The ortho-para transition is shifted from 14.7 meV in the free H2-molecule to 9.4 meV in a presumably commensurate ortho-H2 monolayer on the CO2 surface. The quadrupole-quadrupole interaction of ortho-H2 molecules with the CO2 substrate results in a strongly anisotropic potential. In addition to rotations the dynamics of this layer comprise a local Einstein mode and phonons in resonance with the substrate, giving rise to intense multiphonon transitions. Quasielastic scattering on warmer samples is assigned to a liquidlike adsorption layer, in which the H2 rotations are strongly perturbed. Received: 15 October 1996 / Revised: 25 August 1997 / Accepted: 24 October 1997  相似文献   

13.
4 and disilane Si2H6 induced by continuous wave CO2 laser irradiation has been investigated under the conditions of chemical vapor deposition (CVD) of amorphous hydrogenated silicon a-Si:H. At the very position of depositing the thin film the stationary chemical composition of the processing gas is probed in situ by an effusive molecular beam which passes through a differential pumping stage into a quadrupole mass spectrometer (QMS). With SiH4 as educt and SF6 as a sensitizer, SiH4 and Si2H6 are found in the processing gas while Si3H8 or higher silanes are lacking. Si2H6 and SF6 lead to SiH4, Si2H6, and Si3H8, but higher silanes are missing. The experimentally determined composition of the processing gas is semi-quantitatively reproduced by model calculations based on the assumption of stationary local equilibrium conditions and applying thermodynamic and spectroscopic data (molecular statistics). The mass balance of the processing gas entering and leaving the CVD chamber states an atomic ratio Si:H of 1:2 for the gas phase species forming the solid deposit on the reactor walls. This finding together with theoretical considerations indicates the intermediate Si2H4 to be the dominating gas phase species forming the a-Si:H thin films. Received: 17 July 1998/Accepted: 20 July 1998  相似文献   

14.
The progress in the development of a sensor for the detection of trace air constituents to monitor spacecraft air quality is reported. A continuous-wave (cw), external-cavity tunable diode laser centered at 1.55 μm is used to pump an optical cavity absorption cell in cw-cavity ringdown spectroscopy (cw-CRDS). Preliminary results are presented that demonstrate the sensitivity, selectivity and reproducibility of this method. Detection limits of 2.0 ppm for CO, 2.5 ppm for CO2, 1.8 ppm for H2O, 19.4 ppb for NH3, 7.9 ppb for HCN and 4.0 ppb for C2H2 are calculated. Received: 3 April 2002 / Revised version: 3 June 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +1-202/994-5873, E-mail: Houston@gwu.edu  相似文献   

15.
A diode-laser-based spectrometer for in-situ measurements of volcanic gases   总被引:3,自引:0,他引:3  
We report the first results of the field operation of a novel, portable diode-laser spectrometer for gas-concentration measurements in volcanic areas. Remote detection of direct absorption line shapes was possible thanks to a telecom single-mode optical fiber that delivered radiation from a room-temperature distributed-feedback diode laser, emitting at 1.997 m, to an open-path multiple-reflection cell, placed on gas effluxes. The system was deployed on two different active volcanoes in Italy, where simultaneous and continuous monitoring of CO2 and H2O concentrations has been demonstrated. PACS 42.62.Fi; 07.60.Vg; 93.85.+q  相似文献   

16.
Fundamental spectroscopical parameters of the weak ν1+3ν2 12 13 band of CO2 are reported using a high-resolution, direct-absorption spectrometer, based on a distributed feed-back diode laser emitting at 2 μm. Line intensities and self-broadening coefficients have been measured for the first time with high accuracy, for nine lines of the R branch, from R(44) up to R(59). Comparison with available data has been made, and a generally good agreement has been found. Received: 30 August 1999 / Published online: 24 March 2000  相似文献   

17.
This paper reported the analysis of dilution effects on the opposed-jet H2/CO syngas diffusion flames. A computational model, OPPDIF coupled with narrowband radiation calculation, was used to study one-dimensional counterflow syngas diffusion flames with fuel side dilution from CO2, H2O and N2. To distinguish the contributing effects from inert, thermal/diffusion, chemical, and radiation effects, five artificial and chemically inert species XH2, XCO, XCO2, XH2O and XN2 with the same physical properties as their counterparts were assumed. By comparing the realistic and hypothetical flames, the individual dilution effects on the syngas flames were revealed. Results show, for equal-molar syngas (H2/CO = 1) at strain rate of 10 s?1, the maximum flame temperature decreases the most by CO2 dilution, followed by H2O and N2. The inert effect, which reduces the chemical reaction rates by behaving as the inert part of mixtures, drops flame temperature the most. The thermal/diffusion effect of N2 and the chemical effect of H2O actually contribute the increase of flame temperature. However, the chemical effect of CO2 and the radiation effect always decreases flame temperature. For flame extinction by adding diluents, CO2 dilution favours flame extinction from all contributing effects, while thermal/diffusion effects of H2O and N2 extend the flammability. Therefore, extinction dilution percentage is the least for CO2. The dilution effects on chemical kinetics are also examined. Due to the inert effect, the reaction rate of R84 (OH+H2 = H+H2O) is decreasing greatly with increasing dilution percentage while R99 (CO+OH→CO2+H) is less affected. When the diluents participate chemically, reaction R99 is promoted and R84 is inhibited with H2O addition, but the trend reverses with CO2 dilution. Besides, the main chain-branching reaction of R38 (H+O2→O+OH) is enhanced by the chemical effect of H2O dilution, but suppressed by CO2 dilution. Relatively, the influences of thermal/diffusion and radiation effects on the reaction kinetics are then small.  相似文献   

18.
A photoacoustic spectrometer for the simultaneous detection of isoprene and the deuterated species [4,4-2H]-2-methyl-1,3-butadiene (isoprene-d2) is presented. Using a sealed-off 13CO2 laser a single-component detection limit of 400 ppt (isoprene) and 600 ppt (isoprene-d2) was achieved. Simultaneous monitoring of both compounds allowed the detection of labelling levels down to 6% (isoprene-d2 in total isoprene) with a time resolution of 3 min. In emission studies with Eucalyptus globulus, the deuterated precursor [4,4-2H]-1-deoxy-D-xylulose was fed to a leaf through the transpiration stream. Emission of isoprene-d2 started as early as 10 min after application of the precursor. Received: 3 May 2002 / Revised version: 31 May 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +49-228/733474, E-mail: frank.kuehnemann@iap.uni-bonn.de  相似文献   

19.
Reactions of carbonaceous materials and H O in microwave discharges are known to produce H2, HCN, CO, CO2, and light hydrocarbon gases (primarily C1 and C2) in varying amounts. To determine if the solid or the H2O is the source of hydrogen in formation of the above products, Fu and Blaustein reacted coal and graphite with D2O.1 Low-resolution mass spectra of the gaseous products from the D2O experiments indicated the possibility of non-deuterated and corresponding deuterated compounds in the reaction mixture. Conventional separation and analytical techniques are not applicable to mixtures of this type. This communication describes the use of a high-resolution mass spectrometer, operated at a resolution 35 percent less than theoretically required for separation of the H2-D doublet, to electrically measure precise masses for mixtures containing micromole amounts of deuterated and non-deuterated light gases.  相似文献   

20.
2 evolution by some plants exposed to elevated concentration of pollutants and pressure decrease is studied using a photoacoustic spectrometer with a CO2 laser. The measurements show a considerable CO2 evolution by all kinds of the test plants. The quantity of CO2 emitted by pea seedlings at 8 kPa, for example, exceeds the control one by about 20 times (24 h after the exposure start). The exposure of pea seedlings to C2H4 and O3 at various concentrations also increases CO2 evolution: the 48-h exposure of test plants to C2H4 (at 0.01 ppm) increases CO2 evolution by approximately 100% with respect to the control plants. Received: 09 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号