首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this paper, we reconstruct cosmological models in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the stress-energy tensor. We show that the dust fluid reproduces ΛCDM, phantom–non-phantom era and phantom cosmology. Further, we reconstruct different cosmological models, including the Chaplygin gas, and scalar field with some specific forms of f(R,T). Our numerical simulation for the Hubble parameter shows good agreement with the BAO observational data for low redshifts, z<2.  相似文献   

2.
We study f(T) cosmological models inserting a non-vanishing spatial curvature and discuss its consequences on cosmological dynamics. To figure this out, a polynomial f(T) model and a double torsion model are considered. We first analyze those models with cosmic data, employing the recent surveys of Union 2.1, baryonic acoustic oscillation and cosmic microwave background measurements. We then emphasize that the two popular f(T) models enable the crossing of the phantom divide line due to dark torsion. Afterwards, we compute numerical bounds up to 3-\(\sigma \) confidence level, emphasizing the fact that \(\Omega _{k0}\) turns out to be non-compatible with zero at least at 1\(\sigma \). Moreover, we underline that, even increasing the accuracy, one cannot remove the degeneracy between our models and the \(\Lambda \)CDM paradigm. So that, we show that our treatments contain the concordance paradigm and we analyze the equation of state behaviors at different redshift domains. We also take into account gamma ray bursts and we describe the evolution of both the f(T) models with high redshift data. We calibrate the gamma ray burst measurements through small redshift surveys of data and we thus compare the main differences between non-flat and flat f(T) cosmology at different redshift ranges. We finally match the corresponding outcomes with small redshift bounds provided by cosmography. To do so, we analyze the deceleration parameters and their variations, proportional to the jerk term. Even though the two models well fit late-time data, we notice that the polynomial f(T) approach provides an effective de-Sitter phase, whereas the second f(T) framework shows analogous results compared with the \(\Lambda \)CDM predictions.  相似文献   

3.
We investigate the issues of future oscillations around the phantom divide (FOPD) for f(R) gravity. For this purpose, we introduce two types of energy density and pressure arisen from the f(R)-higher order curvature terms. One has the conventional energy density and pressure even in the beginning of the Jordan frame, whose continuity equation defines the native equation of state w DE. On the other hand, the other has the different energy density and pressure which do not obviously satisfy the continuity equation. This needs to introduce the effective equation of state w eff to describe the f(R)-fluid, in addition to the native equation of state [(w)\tilde]DE\tilde{w}_{\mathrm{DE}}. We show that the FOPD occur in f(R) gravities by introducing two types of equation of state. Finally, we point out that the singularity appears ar x=x c because the stability condition of f(R) gravity violates.  相似文献   

4.
In a recent paper (Sharif and Shamir in Class. Quantum Grav. 26:235020, 2009), we have studied the vacuum solutions of Bianchi types I and V spacetimes in the framework of metric f (R) gravity. Here we extend this work to perfect fluid solutions. For this purpose, we take stiff matter to find energy density and pressure of the universe. In particular, we find two exact solutions in each case which correspond to two models of the universe. The first solution gives a singular model while the second solution provides a non-singular model. The physical behavior of these models has been discussed using some physical quantities. Also, the function of the Ricci scalar is evaluated.  相似文献   

5.
From a macroscopic theory of the quantum vacuum in terms of conserved relativistic charges (generically denoted by q (a) with label a), we have obtained, in the low-energy limit, a particular type of f(R) model relevant to cosmology. The macroscopic quantum-vacuum theory allows us to distinguish between different phenomenological f(R) models on physical grounds. The text was submitted by the authors in English.  相似文献   

6.
The experimental study of the proton-rich nuclei close to the N = Z line is a constant challenge for nuclear spectroscopy, mainly due to the difficulty to produce them with the currently available beam/target combinations. Significant advances on this direction were obtained from experiments performed with the GASP array during the last two years: the yrast line of 84Mo was extended up to 10 + , 88Ru observed for the first time, and the N = Z + 1 line was mapped from 81Zr to 95Ag. These new results allow us to have a more complete image of the transition from the well-deformed shell closure at N,Z = 40 to the spherical-shell closure at N,Z = 50, and highlights some particular effects that can be observed only in the vicinity of the N = Z line.Received: 10 January 2003, Published online: 23 March 2004PACS: 21.10.-k Properties of nuclei; nuclear energy levels - 21.10.Pc Single-particle levels and strength functions - 21.10.Re Collective levels - 23.20.-g Electromagnetic transitions  相似文献   

7.
The objective of this paper is to construct a multiple p-adic q-L-function of two variables which interpolates multiple generalized q-Bernoulli polynomials. By using this function, we solve a question of Kim and Cho. We also define a multiple partial q-zeta function which is related to the multiple q-L-function of two variables. Finally, we give a finite-sum representation of the multiple p-adic q-L-function of two variables and prove a multiple q-extension of the generalized formula of Diamond and Ferrero-Greenberg.  相似文献   

8.
The theoretical and observational consequences of thermodynamics of open systems which allow matter creation, are investigated in modified f(R, T) (R is the Ricci scalar and T is the trace of energy-momentum tensor) theory of gravity within the framework of a flat Friedmann-Robertson-Walker line element. The simplest model f(R, T)=R+2f(T) with “gamma-law” equation of state p = (γ?1)ρ is assumed to obtain the exact solution. A power-law expansion model is proposed by considering the natural phenomenological particle creation rate ψ = 3β n H, where β is a pure number of the order of unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity is observed for γ<0 describing phantom cosmology. The accelerated expansion of the Universe is driven by the particle creation. The density parameter shows the negative curvature of the Universe due to particle creation. The entropy increases with the evolution of the Universe. Some kinematics tests such as lookback time, luminosity distance, proper distance, angular diameter versus redshift are discussed in detail to observe the role of particle creation in early and late time evolution of the Universe.  相似文献   

9.
In previous work, we undertook to study static and anisotropic content in f(T) theory and obtained new spherically symmetric solutions considering a constant torsion and some particular conditions for the pressure. In this paper, still in the framework of f(T) theory, new spherically symmetric solutions are obtained, first considering the general case of an isotropic fluid and later the anisotropic content case in which the generalized conditions for the matter content are considered such that the energy density, the radial and tangential pressures depend on the algebraic f(T) and its derivative f T (T). Moreover, we obtain the algebraic function f(T) through the reconstruction method for two cases and also study a polytropic model for the stellar structure.  相似文献   

10.
Cosmological models with variable G in C-field cosmology for barotropic fluid distribution in FRW space-time are investigated. To get the deterministic model of the universe, we have assumed that G=R n where R is the scale factor and n the constant. To obtain the results in terms of cosmic time t, we have assumed n=−1. We find that for n=−1, Creation field (C) and spatial volume increase with time, G and ρ (matter density) decreases with time, the model represent accelerating universe. Thus inflationary scenario exists in the model. The model is also free from horizon. The results so obtained match with the astronomical observations.  相似文献   

11.
In this paper we study the Geodesic Deviation Equation (GDE) in metric f (R) gravity. We start giving a brief introduction of the GDE in General Relativity in the case of the standard cosmology. Next we generalize the GDE for metric f (R) gravity using again the FLRW metric. A generalization of the Mattig relation is also obtained. Finally we give and equivalent expression to the Dyer-Roeder equation in General Relativity in the context of f (R) gravity.  相似文献   

12.
Recently f(T) theories based on modifications of teleparallel gravity, where torsion is the geometric object describing gravity instead of curvature, have been proposed to explain the present cosmic accelerating expansion. The field equations are always second order, remarkably simpler than f(R) theories. In analogy to the f(R) theory, we consider here three types of f(T) gravity, and find that all of them can give rise to cosmic acceleration with interesting features, respectively.  相似文献   

13.
We obtain exact results in α′ for open and closed A-model topological string amplitudes on a large class of toric Calabi-Yau threefolds by using their correspondence with five dimensional gauge theories. The toric Calabi-Yaus that we analyze are obtained as minimal resolution of cones over Y p,q manifolds and give rise via M-theory compactification to SU(p) gauge theories on . As an application we present a detailed study of the local case and compute open and closed genus zero Gromov-Witten invariants of the orbifold. We also display the modular structure of the topological wave function and give predictions for higher genus amplitudes. The mirror curve in this case is the spectral curve of the relativistic A 1 Toda chain. Our results also indicate the existence of a wider class of relativistic integrable systems associated to generic Y p,q geometries.  相似文献   

14.
Quark mass effects are analyzed at high Q2 in the current fragmentation region of DIS. It is found that the linear combination F 2 -2.75F c 2 scales at large Q2 and small x. We obtained a lower bound for the ratio F c 2/F 2 which lies very close to the data from HERA. Received: 14 January 2002 / Revised version: 9 October 2002 Published online: 9 December 2002 RID="a" ID="a" e-mail: ryutin@th1.ihep.su  相似文献   

15.
The energy dependence of the Cronin momentum for p + A and A + A collisions in the saturation model are calculated. This dependence is consistent with simple dimensional considerations and can be used to test the validity of the saturation model. It gives the possibility to distinguish the different variants of the saturation model with precise experimental data and to measure the x dependence of the saturation momentum.  相似文献   

16.
The well-known energy problem is discussed in f (R) theory of gravity. We use the generalized Landau–Lifshitz energy–momentum complex in the framework of metric f (R) gravity to evaluate the energy density of plane symmetric solutions for some general f (R) models. In particular, this quantity is found for some popular choices of f (R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.  相似文献   

17.
We study the stability of the f(R)-AdS (Schwarzschild–AdS) black hole obtained from f(R) gravity. In order to resolve the difficulty of solving fourth-order linearized equations, we transform f(R) gravity into scalar–tensor theory by introducing two auxiliary scalars. In this case, the linearized curvature scalar becomes a dynamical scalaron, showing that all linearized equations are second order. Using the positivity of gravitational potentials and S-deformed technique allows us to guarantee the stability of f(R)-AdS black hole if the scalaron mass squared satisfies the Breitenlohner–Freedman bound. This is confirmed by computing quasinormal frequencies of the scalaron for the f(R)-AdS black hole.  相似文献   

18.
The hierarchical structure of fermion masses of the Standard Model is explained in split fermion models by localizing the fermions at different points in an extra dimension. We consider split fermion models with two bulk scalars compactified on an orbifold. In the static case we find analytical expression for the localizer. We also address the issue of stability of the localizer. We also find exact solutions for the fermion zero modes. We explore the parameter space of the model. We find ample opportunity for construction of phenomenologically viable theories exist.  相似文献   

19.
The theory of symmetries of systems of coupled, ordinary differential equations (ODE) is used to develop a concise algorithm in order to obtain the entire space of solutions to vacuum Bianchi Einstein’s field equations (EFEs). The symmetries used are the well known automorphisms of the Lie algebra for the corresponding isometry group of each Bianchi Type, as well as the scaling and the time re-parametrization symmetry. The application of the method to Type V I I h results in (a) obtaining the general solution of Type V I I 0 with the aid of the third Painlevé transcendental P I I I ; (b) obtaining the general solution of Type V I I h with the aid of the sixth Painlevé transcendental P V I ; (c) the recovery of all known solutions (six in total) without a prior assumption of any extra symmetry; (d) The discovery of a new solution (the line element given in closed form) with a G 3 isometry group acting on T 3, i.e., on time-like hyper-surfaces, along with the emergence of the line element describing the flat vacuum Type V I I 0 Bianchi Cosmology.  相似文献   

20.
Motivated by recent experimental results and ongoing measurements, we review the chiral perturbation theory prediction for decays. Special emphasis is given to the stability of the inner bremsstrahlung-dominated relative branching ratio versus the K e3 form factors, and on the separation of the structure-dependent amplitude in differential distributions over the phase space. For the structure-dependent terms, an assessment of the order p 6 corrections is given, in particular, a full next-to-leading order calculation of the axial component is performed. The experimental analysis of the photon energy spectrum is discussed, and other potentially useful distributions are introduced.Received: 9 December 2004, Published online: 21 February 2005PACS: 13.20.Eb, 11.30.Rd, 12.39.Fe  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号