首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Thermophysical, magnetic, and dielectric properties of multiferroic BiFeO3 and Bi0.95La0.05FeO3 ceramic compounds were comprehensively studied. Anomalies of the permittivity near an antiferromagnetic phase transition related to the structural variations were detected. The temperature T N was determined from the temperature dependences of the thermal expansion coefficient, heat capacity, and differential susceptibility. It is shown that the transition point is shifted to higher temperatures as the rare-earth La ion substitutes for Bi. It is established that an insignificant substitution of lanthanum for bismuth enhances the magnetic properties of bismuth ferrite and the magnetodielectric effect.  相似文献   

2.
The effects of the 57Fe isotope content and high-frequency magnetic field amplitude h 1 on the shape of the NMR spectrum of multiferroic BiFeO3 at T = 4.2 K are studied by pulsed nuclear magnetic resonance. The NMR spectrum shape and transverse relaxation time T 2 are found to depend strongly on the 57Fe isotope content and h 1 in multiferroic BiFeO3 in the presence of a spatial spin-modulated structure of a cycloid type. In a sample with a high 57Fe isotope content, the Suhl-Nakamura interaction contributes substantially to T 2. When these dynamic effects are taken into account for analysis of the NMR spectrum shape, an undisturbed (without an anharmonicity effect) spatial spin-modulated structure of a cycloid type is shown to exist in BiFeO3.  相似文献   

3.
The polycrystalline samples of (Bi1?x K x ) (Fe1?x Nb x ) O3 (BKFN) for x = 0.0, 0.1, 0.2 and 0.3 were synthesized by a solid-state reaction method. The X-ray diffraction patterns of BKFN exhibit that the addition of KNbO3 in BiFeO3 gradually changes its structure from rhombohedral to pseudocubic. The analysis of scanning electron micrograph clearly showed that the sintered samples have well-defined and uniformly distributed grains. Addition of KNbO3 to BiFeO3 enhances the dielectric, ferroelectric and ferromagnetic properties of BiFeO3. Detailed studies of impedance and related parameters of BKFN using the complex impedance spectroscopic technique exhibit the significant contributions of grain and grain boundaries in the resistive and transport properties of the materials. Some oxygen vacancies created in the ceramic samples during high-temperature processing play an important role in the conduction mechanism. The leakage current or tangent loss of BiFeO3 is greatly reduced on addition of KNbO3 to the parent compound BiFeO3. Preliminary studies of ferroelectric and magnetic characteristics of the samples reveal the existence of ferroelectric, and weak ferromagnetic ordered ceramics.  相似文献   

4.
Results of a complex investigation of the magnetic, magnetoelectric, and magnetoelastic properties of a SmFe3(BO3)4 single crystal are presented. Samarium iron borate is similar to another easy-plane iron borate, NdFe3(BO3)4, in that it possesses a large value of the magnetic-field-induced polarization (about 500 μC/m2), the sign of which changes when the field direction is changed between axes a and b of the crystal. However, the temperature dependence of the magnetic susceptibility and the field dependence of polarization and magnetostriction of the two compounds are significantly different, which is explained by the weak effect of external magnetic field on the ground-state multiplet of samarium ion, which is characterized by an extremely small value of its g-factor.  相似文献   

5.
The structural, elastic, magnetic, and magnetoelectric properties of the CaBaCo4O7 multiferroic are experimentally studied and compared with the properties of the related YBaCo4O7 cobaltite, where Y3+ ions substitute for Ca2+ ions. Unlike the frustrated YBaCo4O7 magnet, the softening of Young’s modulus and the hysteresis in the ΔE(T)/E 0 curve of ferrimagnetic CaBaCo4O7 in the paramagnetic region are weak, and the anomaly during the magnetic transition increases by almost an order of magnitude. This difference can point to different characters of the development of a long-range magnetic order in these two cobaltites. The distortion of the crystal structure that removes the frustrations of exchange interactions is found to correlate with the magnetic behavior of the cobaltites under study. The magnetization curves of the Ca cobaltite have two steps below 15 K, which can point to the presence of a metastable state in a high magnetic field. The study of the longitudinal and transverse magnetoelectric effects in a pulsed magnetic field demonstrates that their magnitudes are maximal near T C and change their character from linear to quadratic during passage through this temperature.  相似文献   

6.
Pure and Gd-doped BiFeO3 nanoparticles have been synthesized by sol–gel method. The significant effects of size and Gd-doping on structural, electrical, and magnetic properties have been investigated. X-ray diffraction study reveals that the pure BiFeO3 nanoparticles possess rhombohedral structure, but with 10% Gd-doping complete structural transformation from rhombohedral to orthorhombic has been observed. The particle size of pure and Gd-doped BiFeO3 nanoparticles, calculated using Transmission electron microscopy, has been found to be in the range 25–15 nm. Pure and Gd-doped BiFeO3 nanoparticles show ferromagnetic character, and the magnetization increases with decrease in particle size and increase in doping concentration. Scanning electron microscopy study reveals that grain size decreases with increase in Gd concentration. Well-saturated polarization versus electric field loop is observed for the doped samples. Leakage current density decreases by four orders by doping Gd in BiFeO3. The incorporation of Gd in BiFeO3 enhances spin as well as electric polarization at room temperature. The possible origin of enhancement in these properties has been explained on the basis of dopant and its concentration, phase purity, small particle, and grain size.  相似文献   

7.
Exchange bias (EB) of multiferroics presents many potential opportunities for magnetic devices. However, instead of using low-temperature field cooling in the hysteresis loop measurement, which usually shows an effective approach to obtain obvious EB phenomenon, there are few room temperature EB. In this article, extensive studies on room temperature EB without field cooling were observed in BiFeO3 nano- and microcrystals. Moreover, with increasing size the hysteresis loops shift from horizontal negative exchange bias (NEB) to positive exchange bias (PEB). In order to explain the tunable EB behaviors with size dependence, a phenomenological qualitative model based on the framework of antiferromagnetic (AFM) core-two-dimensional diluted antiferromagnet in a field (2D-DAFF) shell structure was proposed. The training effect (TE) ascertained the validity of model and the presence of unstable magnetic structure using Binek’s model. Experimental results show that the tunable EB effect can be explained by the competition of ferromagnetic (FM) exchange coupling and AFM exchange coupling interaction between AFM core and 2D-DAFF shell. Additionally, the local distortion of lattice fringes was observed in hexagonal-shaped BiFeO3 nanocrystals with well-dispersed behavior. The electrical conduction properties agreed well with the space charge-limited conduction mechanism.  相似文献   

8.
The crystal structure and magnetic properties of the Bi1 ? x Ca x Fe1 ? x/2Nb x/2O3 system were studied. It is shown that, at x ≤ 0.15, the unit-cell symmetry of solid solutions is rhombohedral (space group R3c). Solid solutions with x ≥ 0.3 have an orthorhombic unit cell (space group Pbnm). The rhombohedral compositions are antiferromagnetic, while the orthorhombic compositions exhibit a small spontaneous magnetization due to Dzyaloshinski?-Moriya interaction. In CaFe0.5Nb0.5O3, the Fe3+ and Nb5+ ions are partially ordered and the unit cell is monoclinic (space group P21/n). In the concentration range 0.15 < x < 0.30, a two-phase state (R3c + Pbnm) is revealed.  相似文献   

9.
The polycrystalline (Bi1-xPbx)(Fe1-xZr0.6xTi0.4x)O3 (x=0.15, 0.25, 0.40, 0.50) (BPFZT) nanoceramic composites were synthesized using mechanical activation and solid-state reaction techniques. The formation of single-phase compounds with 100% solubility of BiFeO3 and Pb(Zr0.6Ti0.4)O3 was confirmed by an X-ray diffraction (XRD) technique. Detailed structural analysis of the fabricated BPFZT composites suggests the formation of tetragonal structure (i.e., distorted perovskite) for all composition. The dielectric constant and loss-tangent of the BPFZT composites decrease on increasing frequency and temperature. It has also been observed that the leakage current and loss-tangent are reduced by increasing the contents of PZT in the BPFZT composites, and hence they may be considered useful for some applications. The values of activation energies and the nature of variation of conductivity with temperature and frequencies suggest that the space charge and oxygen ion vacancies play a significant role in the conduction process. PACS 61.10.Nz; 77.22.Ch; 77.84.Lf; 81.20.Ev  相似文献   

10.
The evolution of the antiferromagnetism vector of multiferroic BiFeO3 during switching of its ferroelectric polarization by an electric field has been studied by numerical simulation in the framework of the phenomenological model for the magnetic anisotropy energy. Optimal variants have been found for the cut of electrosensitive BiFeO3 layer, the deformation induced by a substrate, and the direction of applying electric field for the development of prototypes of new-generation marnetoresistive memory.  相似文献   

11.
The density of liquid and undercooled BiFeO3 and high-temperature solid, liquid, and undercooled BaTiO3 was measured with an electrostatic levitation furnace. The density was obtained with an ultraviolet-based imaging technique that allowed excellent sample contrast throughout all phases of processing, including at elevated temperatures. Over the 1250- to 1490-K temperature range, the density of liquid BiFeO3 can be expressed as L(T)=6.70×103–1.31(T-Tm)(kgm-3) (±2 per cent) with Tm=1423 K, yielding a volume coefficient of thermal expansion L(T)=1.9×10-4 K-1. For BaTiO3, the density of the solid can be expressed as S(T)=5.04×103–0.21(T-Tm) (Tm=1893 K) over the 1220- to 1893-K range, yielding a volume coefficient of thermal expansion S(T)=4.2×10-5 K-1, whereas that of the liquid can be expressed as L(T)=4.04×103-0.34(T-Tm) over the 1300- to 2025-K range with L(T)=8.4×10-5 K-1. PACS 77.84.-s; 81.05.Je; 81.20.n  相似文献   

12.
The magnetic, magnetoelectric, and magnetoelastic properties of a PrFe3(BO3)4 single crystal and the phase transitions induced in this crystal by the magnetic field are studied both experimentally and theoretically. Unlike the previously investigated ferroborates, this material is characterized by a singlet ground state of the rare-earth ion. It is found that, below T N = 32 K, the magnetic structure of the crystal in the absence of the magnetic field is uniaxial (lc), while, in a strong magnetic field Hc (H cr ~ 43 kOe at T = 4.2 K), a Fe3+ spin reorientation to the basal plane takes place. The reorientation is accompanied by anomalies in magnetization, magnetostriction, and electric polarization. The threshold field values determined in the temperature interval 2–32 K are used to plot an H-T phase diagram. The contribution of the Pr3+ ion ground state to the parameters under study is revealed, and the influence of the praseodymium ion on the magnetic and magnetoelectric properties of praseodymium ferroborate is analyzed.  相似文献   

13.
Polycrystalline multiferroic PbFe0.5Nb0.5O3 (PFN) fabricated by a solid-phase method is studied. Before sintering, a synthesized PFN powder is processed in Bridgman anvils via a force action in combination with shear deformation (FASD) at room temperature. The electrophysical properties and structural parameters of processed samples and a reference sample are compared. Point defects are shown to play a key role in the formation of the physical properties beginning from an FASD of 200 MPa.  相似文献   

14.
The magnetic properties of the Bi1 ? x Ln x FeO3 (Ln is a rare-earth ion), Bi1 ? x A x FeO3 ? x/2 (A is an alkali earth ion), and BiFe1 ? x Ti x O3 + δ solid solutions in magnetic fields up to 14 T have been studied. The concentration ranges of the existence of the ferroelectric phase described by the space group R3c have been determined. It is shown that the substitution of the rare-earth ions for the Bi3+ ions leads to a sharp decrease in the critical fields inducing the metamagnetic transition from a modulated antiferromagnetic state to a weakly ferromagnetic one; however, the modulated structure in the concentration range of the R3c phase is mainly retained. The substitution of the alkali earth ions (x ~ 0.1) for the bismuth ions leads to the total destruction of the modulated structure and to the implementation of the weakly ferromagnetic state within the R3c phase. A homogeneous weakly ferromagnetic state has been revealed when the Ti4+ ions (x = 0.1) are substituted for the Fe3+ ions in the ferroelectric R3c phase.  相似文献   

15.
The neodymium ferroborate NdFe3(BO3)4 undergoes an antiferromagnetic transition at T N = 30 K, which manifests itself as a λ-type anomaly in the temperature dependence of the specific heat C and as inflection points in the temperature dependences of the magnetic susceptibility χ measured at various directions of an applied magnetic field with respect to the crystallographic axes of the sample. Magnetic ordering occurs only in the subsystem of Fe3+ ions, whereas the subsystem of Nd3+ ions remains polarized by the magnetic field of the iron subsystem. A change in the population of the levels of the ground Kramers doublet of neodymium ions manifests itself as Schottky-type anomalies in the C(T) and χ(T) dependences at low temperatures. At low temperatures, the magnetic properties of single-crystal NdFe3(BO3)4 are substantially anisotropic, which is determined by the anisotropic contribution of the rare-earth subsystem to the magnetization. The experimental data obtained are used to propose a model for the magnetic structure of NdFe3(BO3)4.  相似文献   

16.
The colossal (more than threefold) decrease in the dielectric constant ɛ in the easy-plane SmFe3(BO3)4 ferroborate in a magnetic field of ∼5 kOe applied in the basal ab plane of the crystal has been found. A close relation of this effect to anomalies in the field dependence of the electric polarization has been established. It has been shown that this magnetodielectric effect is due to the contribution to ɛ from the electric susceptibility, which is related to the rotation of spins in the ab plane, arises in the region of the antiferromagnetic ordering T < T N = 33 K, and is suppressed by the magnetic field. A theoretical model describing the main features of the behavior of ɛ and electric polarization in the magnetic field has been proposed, taking into account the additional anisotropy in the basal plane induced by the magnetoelastic stresses.  相似文献   

17.
The (1 − x)BiFeO3−x YMnO3 solid solutions have been found to undergo the following sequence of phase transformations with increasing x: R3cPbnmC2 → PnmaP63 cm. It has been established that the Pbnm and Pnma phases have different orientations of atomic displacements and can exhibit antiferroelectric properties.  相似文献   

18.
BiFeO3 (BFO) thin films with BaTiO3 (BTO) or SrTiO3 (STO) as buffer layer were epitaxially grown on SrRuO3-covered SrTiO3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.  相似文献   

19.
The effect of applied dc bias electric field on dielectric permittivity in bulk Y2NiMnO6 is investigated in this paper. It is found that a small bias field of 40 V/cm can greatly reduce the dielectric permittivity around the room temperature, compared to the much larger electric field that is required for conventional ferroelectric materials. The observed giant dielectric tunability is retained over a broad range of around room temperature and is most likely related to the charge ordering of Ni2+ and Mn4+ ions. This may further confirm the existence of electronic ferroelectricity in Y2NiMnO6.  相似文献   

20.
In this study, FeNi3/Al2O3 core-shell nanocomposites, where individual FeNi3 nanoparticles were coated with a thin layer of alumina, were fabricated by a modified sol-gel method. Several physical characterizations were performed on the samples of FeNi3/Al2O3 nanocomposites with different thickness of Al2O3 shell. The encapsulation of FeNi3 nanoparticles with alumina stops FeNi3 agglomeration during heat treatment, and prevents interaction among the closely spaced magnetic FeNi3 nanoparticles. The Al2O3 insulating shell improves the soft magnetic properties of FeNi3. The study of the complex permeability of the samples shows that the real part μ’ of the permeability of the sample with Al molar content of 20% (Al/(Fe+Ni)) is as high as 12, and independent of frequency up to at least 1 GHz. The tunneling magnetoresistance arising from the presence of the Al2O3 shell have also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号