首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a single crystal of 0.96Na0.5Bi0.5TiO3-0.04BaTiO3 with dimensions of Φ 30×10 mm was grown by the top-seeded-solution growth method. X-ray powder diffraction results show that the as-grown crystal possesses the rhombohedral perovskite-type structure. The dielectric, piezoelectric and electrical conductivity properties were systematically investigated with 〈001〉, 〈110〉 and 〈111〉 oriented crystal samples. The room-temperature dielectric constants for the 〈001〉, 〈110〉 and 〈111〉 oriented crystal samples are found to be 650, 740 and 400 at 1 kHz. The (T m, ε m) values of the dielectric temperature spectra are almost independent of the crystal orientations; they are (306°C, 3718), (305°C, 3613) and (307°C, 3600) at 1 kHz for the 〈001〉, 〈110〉 and 〈111〉 oriented crystal. The optimum poling conditions were obtained by investigating the piezoelectric constants d 33 as a function of poling temperature and poling electric field. For the 〈001〉 and 〈110〉 crystal samples, the maximum d 33 values of 146 and 117 pC/N are obtained when a poling electric field of 3.5 kV/mm and a poling temperature of 80°C were applied during the poling process. The as-grown 0.96Na0.5Bi0.5TiO3-0.04BaTiO3 crystal possesses a relatively large dc electrical conductivity, especially at higher temperature, having a value of 1.98×10−11 Ω−1⋅m−1 and 3.95×10−9 Ω−1⋅m−1 at 25°C and 150°C for the 〈001〉 oriented crystal sample.  相似文献   

2.
We obtained the second harmonic of a frequency-tripled Nd:YVO4 laser at wavelength of 177.3 nm with 12.95 mW output by using an optically contacted KBe2BO3F2-CaF2 prism-coupled device with a 2.1 mm thick KBe2BO3F2 crystal, which is to our knowledge the best result at this wavelength. PACS 42.65.Ky; 42.70.Mp; 42.55.Xi  相似文献   

3.
Bulk single crystals β-FeSi2, as a new photoelectric and thermoelectric material, has been successfully grown using chemical vapor transport technique by using iodine as transport agent in a sealed ampoule. The effects of crystal growth condition on quality and morphologies of the single crystals were studied. Both needle-like and grain-like single crystals were gained. By changing substrate temperature, tetrahedral high quality α-FeSi2 single crystals were also obtained.  相似文献   

4.
Direct comparison of the properties of a thin surface layer and the bulk of macroscopic hematite (α-Fe2O3) crystals was used to study the magnetic structure of the surface layer and the bulk and the processes attendant on spin-reorientation phase transition (SRT). The investigation tool was simultaneous γ-ray, X-ray, and electronic Mössbauer spectroscopy, which enabled us to study the bulk and surface properties of macroscopic samples simultaneously and to compare them directly. Direct evidence of the existence of a surface “transition layer” on hematite crystals is obtained. The existence of this layer was suggested and described by Krinchik and Zubov [JETP 69, 707 (1975)]. The study in the SRT region showed that (1) the Morin SRT in the crystal bulk occurs in a jump (as a first-order phase transition), whereas in the surface layer of about 200 nm thick, some smoothness appears in the mechanism of magnetic-moment reorientation; (2) SRT in the surface layer, as in the bulk, involves an intermediate state in which low-and high-temperature phases coexist; and (3) SRT in the surface layer occurs at a temperature several degrees higher than in the bulk. Our experimental evidence on the SRT mechanism in the surface layer correlates with the inferences from phenomenological theory developed by Kaganov [JETP 79, 1544 (1980)].  相似文献   

5.
Lattice defects in a scintillation detector made of Bi4Ge3O12 (BGO) could severely impact detector efficiency via non-radiative transfer of electron excitation, thus making thorough investigations of these defects highly important. Here we present a combined experimental and theoretical study of two- and three-dimensional defects in a Czochralski-grown BGO crystal. Upon examination by transmission electron microscopy the selected-area electron diffraction (SAED) patterns in two neighboring parts of the specimen reveal different kinds of two- and three-dimensional defects. Three sub-grains misoriented at 2.47° with reference to each other and probable presence of stacking faults lying in {011} planes were observed in the first examined local area. The SAED image taken from an area in the close neighborhood is much more complicated and is explained in terms of the superposition of reflections from: (i) a partially textured GeO2 second-phase inclusion; (ii) the basic lattice of BGO and (iii) a superlattice-like structure based on the BGO lattice. The atomic structure of such a superlattice-like structure was theoretically modeled and the corresponding simulated SAED patterns were found to be in good agreement with the experimentally observed one.  相似文献   

6.
X-ray structural and polarization optical investigations have been performed, and birefringence and rotation angles of the optical indicatrix φ b and φ c of the K2WO2F4 · H2O crystal have been measured in the temperature range of 100–600 K. The structure and symmetry of compounds at room temperature have been refined. It has been established that the layered crystal K2WO2F4 · H2O can exist in two states (A and B) depending on the atmospheric humidity and undergoes the sequence of reversible and irreversible phase transformations G 3G 2G 1G 0. The sequences of changes in the phase symmetry P [`1]\bar 1 ↔ C2/mP4/nmm for samples A and mC2/mP4/nmm for samples B have been found. The second-order proper ferroelastic phase transition (P [`1]\bar 1 ↔ C2/m) at T 03 = 270–290 K (G 3G 2) is accompanied by twinning and appearance of the shift deformation x 6. The crystal system of the substance for the B crystals remains invariable after the second-order phase transition G 3G 2. The irreversible first-order phase transition G 2G 1 occurs in a temperature range T 02 ≈ 350–380 K; it is accompanied by the loss of the crystallization water, which then is reduced easily from the atmosphere for a day. The substance decomposes at T 01 ≈ 510 K (G 1G 0). The distinction between the A and B crystals has been explained by the presence or absence of free water in interlayer spacings.  相似文献   

7.
Organic–inorganic hybrid sample [N(C4H9)4]2Cu2Cl6 was prepared via the reaction between copper chloride and tetrabutylammonium chloride. The compound was characterized by X-ray powder diffraction, IR, Raman, differential scanning calorimetry (DSC), DTA-TGA analysis and electrical impedance spectroscopy. DSC studies indicate a presence of one-phase transition at 343 K. The complex impedance of compound [N(C4H9)4]2Cu2Cl6 have been investigated in temperature and frequency ranges 300–380 K and 200 Hz–5 MHz, respectively. The Z′ and Z″ versus frequency plots are well fitted to an equivalent circuit model. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements CPE. The frequency dependence of the conductivity is interpreted in term of Jonscher's law: s(w) = sdc + Awn \sigma (\omega ){ } = {\sigma_{\rm{dc}}} + { }A{\omega^n} . The conductivity follows the Arrhenius relation. The variation of the value of these elements with temperatures confirmed the availability of the phase transition at 343 K detected by DSC and electrical measurements.  相似文献   

8.
Evolution of microstructure and optical property with annealing temperature has been examined for Ba0.9Sr0.1TiO3 films derived from one single precursor solution containing polyethylene glycol polymer. The films sintered below 750°C exhibit a uniform phase structure across the cross-sections and an ordinary optical thin film feature, while the Ba0.9Sr0.1TiO3 films crystallized at 750°C or higher temperature render a lamellar texture consisting of dense and porous Ba0.9Sr0.1TiO3 layers and a good performance as a one-dimensional photonic crystal. The discrepancy in cross-sectional morphology and reflectance property observed in these Ba0.9Sr0.1TiO3 films has been preliminarily explained.  相似文献   

9.
A new polyanionic cathode material, Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C for lithium-ion batteries, was synthesized using a sol-gel method and with N,N-dimethyl formamide as a dispersion agent. The analysis of electron transmission spectroscopy and X-ray diffraction revealed that the composite contained two phases. The material has high crystallinity with a grain size of 20–50 nm. The valence states of Mn, V, and Fe in the composite were analyzed by X-ray photoelectron spectroscopy. The electrochemical kinetics in Li3V2(PO4)3 is effectively enhanced by the incorporation of LiMnPO4 and LiFePO4, via structure modification and reduced Li diffusion length. The Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C materials displayed high rate capacity and steady cycle performance with discharge capacity remained 148 mAh g?1 after 50 cycles at the rate of 0.2C. In particular, the composite exhibited excellent reversible capacities, with the values of 157, 134, 120, 102, and 94 mAh g?1 at charge/discharge 0.2, 0.5, 1, 2, and 5C rates, respectively.  相似文献   

10.
The dependence of thermal properties of Ag8In14Sb55Te23 phase-change memory materials in crystalline and amorphous states on temperature was measured and analyzed. The results show that in the crystalline state, the thermal properties monotonically decrease with the temperature and present obvious crystalline semiconductor characteristics. The heat capacity, thermal diffusivity, and thermal conductivity decrease from 0.35 J/g K, 1.85 mm2/s, and 4.0 W/m K at 300 K to 0.025 J/g K, 1.475 mm2/s, and 0.25 W/m K at 600 K, respectively. In the amorphous state, while the dependence of thermal properties on temperature does not present significant changes, the materials retain the glass-like thermal characteristics. Within the temperature range from 320 K to 440 K, the heat capacity fluctuates between 0.27 J/g K and 0.075 J/g K, the thermal diffusivity basically maintains at 0.525 mm2/s, and the thermal conductivity decreases from 1.02 W/m K at 320 K to 0.2 W/m K at 440 K. Whether in the crystalline or amorphous state, Ag8In14Sb55Te23 are more thermally active than Ge2Sb2Te5, that is, the Ag8In14Sb55Te23 composites bear stronger thermal conduction and diffusion than the Ge2Sb2Te5 phase-change memory materials.  相似文献   

11.
The discovery of stimulated Raman scattering (SRS) in monoclinic fluoride β-BaYb2F8 known as a host matrix for Ln3+ lasant ions was reported. All the recorded spectral components of Stokes and anti-Stokes χ(3)-nonlinear picosecond generation were assigned to the three SRS-active photon Ag- and Bg-modes of a crystal (ωSRS1 ~ 362 cm–1, ωSRS2 ~ 295 cm–1, and ωSRS3 ~ 230 cm–1).  相似文献   

12.
The α-Fe2O3/Ag2S p-n heterojunction has been prepared via a facile room temperature successive ionic layer adsorption and reaction (SILAR) method. The heterojunction exhibits higher photoelectrochemical property compared to bare α-Fe2O3. The amount of Ag2S has a significant effect on the PEC performance, which could be controlled by varying the number of SILAR cycles. The α-Fe2O3/Ag2S p-n heterojunction prepared via 6 cycles of SILAR processes displays the best photoelectrochemical performance, which exhibits 1.8 times enhancement of photocurrent density and 70 mV cathodic shift of onset potential compared to bare α-Fe2O3. The improved PEC performance could be attributed to the formation of p-n junction between Ag2S and α-Fe2O3, which not only enhanced the optical absorption ability, but also facilitated the separation efficiency of photogenerated charge carriers and passivized the surface state.  相似文献   

13.
The polarized Raman spectra of SrB4O7 (SBO) single crystals are studied in detail in the temperature range of 300–1273 K. The TO, LO, and IO phonon lines of A1, A2, B1, and B2 symmetries of rhombic SBO at 300 K are identified. The behavior of the Raman spectra of SBO crystals is studied upon heating up to their melting. The relation of Raman spectra with the structure of boron–oxygen fragments, as well as the transformation of spectra in the process of melting of SBO crystals, is discussed.  相似文献   

14.
Composite solid electrolytes in the system (1???x)Li2CO3xAl2O3, with x?=?0.0–0.5 (mole), were synthesized by a sol–gel method. The synthesis carried out at low temperature resulted in voluminous and fluffy products. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy/energy-dispersive X-ray, Fourier transform infrared spectroscopy and AC impedance spectroscopy. Structural analysis of the samples showed an amorphous feature of Li2CO3 and traces of α-LiAlO2, γ-LiAlO2 and LiAl5O8. The prepared composite samples possess high ionic conductivities at 130–180 °C on account of the presence of lithium aluminates as well as the formation of a high concentration of an amorphous phase of Li2CO3 via this sol–gel preparative technique.  相似文献   

15.
The specific heat of [NH2(CH3)2]2ZnCl4 was measured calorimetrically in the temperature region 80–300 K. As the temperature T decreases, the C p (T) dependence indicates a phase transition sequence, with the phase transition at T6=151 K observed for the first time. The thermodynamic characteristics of the crystal were refined. The transformation occurring at T2=298.3 K is shown to be an incommensurate-commensurate phase transition.  相似文献   

16.
The UV absorption spectra of F3? molecular ions in LaF3, SrF2, CaF2, and BaF2 crystals doped with rare-earth elements are studied. Comparison of radiation-colored and additively colored crystals reveals the absorption bands of F3? hole centers in the region near 6 eV. Nonempirical calculations of optical transitions agree well with experimental results.  相似文献   

17.
The microwave characteristics of Pb1?x Ca x Fe0.5Nb0.5O3 multiferroics (x = 0.0, 0.4, 0.45, 0.5, 0.55, 0.6), have been investigated as a function of frequency and substitution. The results depict ?13.99 dB reflection loss at 11.65 GHz in composition x = 0.6. Microwave absorption is enhanced with substitution of Ca2+ ions and undoped composition 0.0 behaves as electromagnetic shield. The model governing microwave absorption is discussed and different compositions for electromagnetic applications have been suggested.  相似文献   

18.
The results of the study of photoluminescence and its excitation spectra in Tl x Cu1−x GaSe2 single crystals are presented. The crystals under study are layered and characterized by anisotropic optical properties. In this respect, it is important to investigate optical properties of the crystals under study.  相似文献   

19.
20.
Composite structures consisting of (001)-oriented SrTiO3 (STO)/La0.7Sr0.3MnO3 (LSMO) films of 30 nm thickness, grown on an (001) Pb(Mg1/3Nb2/3)TiO3– 28 mol.% PbTiO3 piezoelectric relaxor-ferroelectric single-crystalline wafer were investigated by means of Wide-Angle X-ray Diffraction (WAXRD) in situ under influence of a d.c. electric field with strength E up to ±18 kV/cm. The WAXRD measurements of the films and substrate reflection profiles resulted in a determination of the strain s in the films and the substrate separately. The strained state of the STO/LSMO films is effectively controlled by a huge converse piezoelectric effect of the PMN-PT substrate. The coefficients of coupling between electric-field-induced out-of-plane strain in the films and in the substrate for the composite system STO/LSMO/PMN-PT are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号