首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review our theoretical work on the dynamics of a localized electron spin interacting with an environment of nuclear spins. Our perturbative calculation is valid for arbitrary polarization p of the nuclear spin system and arbitrary nuclear spin I in a sufficiently large magnetic field. In general, the electron spin shows rich dynamics, described by a sum of contributions with exponential decay, nonexponential decay, and undamped oscillations. We have found an abrupt crossover in the long-time spin dynamics at a critical shape and dimensionality of the electron envelope wave function. We conclude with a discussion of our proposed scheme to measure the relevant dynamics using a standard spin–echo technique.  相似文献   

2.
We study the dynamics of an electron confined in a one-dimensional double-well potential in the presence of driving external magnetic fields. The orbital motion of the electron is coupled to the spin dynamics by spin-orbit interaction of the Dresselhaus type. We derive an effective time-dependent model Hamiltonian for the orbital motion of the electron and obtain a condition for synchronization of the orbital and the spin dynamics. We find an analytical expression for the Arnold 'tongue' and propose an experimental scheme for realizing the proposed synchronization.  相似文献   

3.
We study analytically the photoionization of a coherent superposition of electronic states and show that chirped pulses can measure attosecond time scale electron dynamics just as effectively as transform-limited attosecond pulses of the same bandwidth. The chirped pulse with a frequency-dependent phase creates the interfering photoelectron amplitudes that measure the electron dynamics. We show that at a given pump-probe time delay the differential asymmetry oscillates as a function of photoelectron energy. Our results suggest that the important parameter for attosecond science is not the pulse duration, but the bandwidth of phased radiation.  相似文献   

4.
We propose a model to describe correlated two-electron dynamics in strong laser fields during laser-induced recollision between an electron and its parent ion. We derive an effective interaction potential which describes the effect of the laser-driven electron collision with an ion while retaining the correlation between the colliding and the bound electron. Using dissociative ionization of molecular hydrogen as an example, we analyze the dynamics of correlation-driven electron localization in a dissociating hydrogen molecular ion.  相似文献   

5.
We present simulation studies of the formation and dynamics of dark solitons and vortices in quantum electron plasmas. The electron dynamics in the latter is governed by a pair of equations comprising the nonlinear Schr?dinger and Poisson system of equations, which conserves the number of electrons as well as their momentum and energy. The present governing equations in one spatial dimension admit stationary solutions in the form a dark envelope soliton. The dynamics of the latter reveals its robustness. Furthermore, we numerically demonstrate the existence of cylindrically symmetric two-dimensional quantum electron vortices, which survive during collisions. The nonlinear structures presented here may serve the purpose of transporting information at quantum scales in ultracold micromechanical systems and dense plasmas, such as those created during intense laser-matter interactions.  相似文献   

6.
The femtosecond inter-Landau-level dynamics of a two-dimensional electron gas in a large magnetic field is investigated by degenerate four-wave mixing on modulation doped quantum wells. We observe a large transfer of oscillator strength to the lowest Landau level, and unusual dynamics due to Coulomb correlation. We interpret the effects using a model based on shakeup of the electron gas.  相似文献   

7.
We observe the noise spectrum of electron spins in bulk GaAs by Faraday-rotation noise spectroscopy. The experimental technique enables the undisturbed measurement of the electron-spin dynamics in semiconductors. We measure exemplarily the electron-spin relaxation time and the electron Landé g factor in -doped GaAs at low temperatures and find good agreement of the measured noise spectrum with a theory based on Poisson distribution probability.  相似文献   

8.
We study nuclear spin dynamics in a quantum dot close to the conditions of electron spin resonance. We show that at a small frequency mismatch, the nuclear field detunes the resonance. Remarkably, at larger frequency mismatch, its effect is opposite: The nuclear system is bistable, and in one of the stable states, the field accurately tunes the electron spin splitting to resonance. In this state, the nuclear field fluctuations are strongly suppressed, and nuclear spin relaxation is accelerated.  相似文献   

9.
We show that front motion can be induced by noise in a spatially extended excitable system with a global constraint. Our model system is a semiconductor superlattice exhibiting complex dynamics of electron accumulation and depletion fronts. The presence of noise induces a global change in the dynamics of the system forcing stationary fronts to move through the entire device. We demonstrate the effect of coherence resonance in our model; i.e., there is an optimal level of noise at which the regularity of front motion is enhanced. Physical insight is provided by relating the space-time dynamics of the fronts with a phase-space analysis.  相似文献   

10.
We study the dynamics of an electron weakly coupled to a phonon gas. The initial state of the electron is the superposition of two spatially localized distant bumps moving towards each other, and the phonons are in a thermal state. We investigate the dynamics of the system in the kinetic regime and show that the time evolution makes the non-diagonal terms of the density matrix of the electron decay, destroying the interference between the two bumps. We show that such a damping effect is exponential in time, and the related decay rate is proportional to the total scattering cross section of the electron-phonon interaction.  相似文献   

11.
We have studied electron emission from the H(2)(+) ion by a circularly polarized laser pulse (800 nm, 6×10(14) W/cm(2)). The electron momentum distribution in the body fixed frame of the molecule is experimentally obtained by a coincident detection of electrons and protons. The data are compared to a solution of the time-dependent Schr?dinger equation in two dimensions. We find radial and angular distributions which are at odds with the quasistatic enhanced ionization model. The unexpected momentum distribution is traced back to a complex laser-driven electron dynamics inside the molecule influencing the instant of ionization and the initial momentum of the electron.  相似文献   

12.
《Physics letters. A》2006,355(6):468-472
We study the one-electron wave-packet dynamics in the one-dimensional diluted Anderson model which is composed of two interpenetrating chains with pure and random on-site potentials, respectively. This model presents extended states at a particular resonance energy. Starting with one electron fully localized at the site closer to the chain center, we solve the set of coupled motion equations and calculate the time evolution of the wave-packet width. We report on a long-time memory effect which is reflected by distinct asymptotic dynamics governing the wave-function spread for electrons initially localized at random or pure sites. This anomalous behavior is discussed under the light of the Bloch character of the extended resonant state.  相似文献   

13.
We report spatially and time-resolved measurements of ultrafast carrier dynamics around buried nano-scale Schottky contacts, performed with a novel femtosecond near-field scanning optical microscope. The experimental results are modeled by a self-consistent treatment of the drift–diffusion equation for the carriers and Poisson’s equation for the built-in electric field. We show that the built-in field suppresses electron transport towards and trapping into the metal particles at lower optically excited carrier densities. In contrast, efficient electron trapping into the metal occurs at higher electron densities, which screen the built-in field, allowing for efficient transport of electrons towards the Schottky contact.  相似文献   

14.
We have analytically and numerically studied the self-action dynamics of laser radiation in a plasma with ionized gas clusters. Based on the simplified model of a cluster in the form of a superposition of two charged (electron and ion) bunches, we analyze the nonlinearity mechanisms. We refine the electrodynamic cluster model by the molecular dynamics method. The polarization behavior of the plasma bunch in the main part of the laser pulse is shown to be the same as that in the simplified model. We investigate the self-action dynamics of laser radiation under conditions when the nonlinearity of the stratified medium is determined by the anharmonicity of the electron motion in the cluster, while the group velocity dispersion is determined by both the background plasma and the ionized clusters. Since the characteristic field for the electron nonlinearity depends strongly on the cluster size, the peculiarities of the self-action dynamics result from plasma bunch expansion. The spatiotemporal evolution of the wave field is shown to be accompanied by pulse self-compression near the trailing edge.  相似文献   

15.
We consider the two-level electron dynamics in a double quantum well in a periodic, anharmonic external electric field. We propose a method for solving the Schrödinger equation, which is based on the generalization of conventional resonance approximation for a system with an arbitrary number of resonances. The method is used for the case of both weak and strong fields. We obtain expressions for the quasi-energy wave functions and the electron dipole moment. It is shown that the dependence of the dipole moment on the constant component of external field is quasi-periodic, and the dipole moment changes sign at different half-periods.  相似文献   

16.
We study by first-principles molecular dynamics the mechanism of electron hole (positive charge) localization in a laboratory realizable radical cation Z DNA crystal. We find that at room temperature structural deformation does not provide an efficient localization mechanism. Instead, we find evidence for the importance of changes in the protonation state for stabilizing the radical defect.  相似文献   

17.
We observe multiply frustrated tunneling ionization-induced dissociation of the argon dimers by intense linearly polarized ultrashort laser pulses. By measuring the kinetic energy release and angular distribution of the Coulomb explosion of up to eightfold ionized argon dimers, we can trace the recapture of up to two electrons to Rydberg states of the highly charged compound at the end of the laser pulse. Upon dissociation of the dimer, the Rydberg electron prefers to localize at the atomic ion with the higher charge state. We probe the electron recapture dynamics by a time-delayed weak pulse.  相似文献   

18.
We report on a theoretical analysis of terahertz (THz-) field induced nonlinear dynamics of electrons in a semiconductor superlattice that are capable to perform Bloch oscillations. Our results suggest that for a strong THz-field a dc voltage should be generated. We have analyzed the real-time dynamics using a balance equation approach to describe the electron transport in a superlattice miniband. Taking account of both Bloch oscillations of electrons in a superlattice miniband and dissipation, we studied the influence of a strong THz-field on currently available superlattices at room temperature. We found that a THz-field can lead to a negative conductance resulting in turn in a THz-field induced dc voltage, and that the voltage per superlattice period should show, for varying amplitue of the THz-field, a form of wisted plateaus with the middle points being with high precision equal to the photon energy divided by the electron charge. We show voltage to the finite voltage state, and that in the finite voltage state dynamic localization of the electrons in a miniband occurs.  相似文献   

19.
Femtosecond time-resolved two-photon photoemission spectroscopy is employed to study the dynamics of the non-equilibrium electron distribution in the conducting polymer poly(3,4-ethylene-dioxythiophene): poly-(styrenesulfonate) (PEDT:PSS) film following optical excitation at 2.1 eV. We found that the electron thermalization occurs on a ultrafast timescale of around 60 fs analogous to the relaxation times of optically excited electrons in Au(111).  相似文献   

20.
Summary We present a calculation of the Cu(111) surface dynamics in the framework of the multipole model. The electronic degrees of freedom include dipole and quadrupole deformabilities of the conduction electron density, the multipole expansion points being located at the midpoints between nearest-neighbour ions. The model accounts for the anomalous longitudinal resonance by an increase of dipolar deformability at the surface. Moreover the model explains in a straight-forward way the intense He scattering from the longitudinal resonance via the dipolar and quadrupolar modulations of the surface electron density. The surface dipolar contribution also explains the intense electron scattering from the optical surface resonance localized on the second layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号