首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emission spectra of three Cd0.6Mn0.4Te/Cd0.5Mg0.5Te superlattices with Cd0.6Mn0.4Te quantum-well (QW) widths of 7, 13, and 26 monolayers, respectively, and the same thickness (46 monolayers) of the Cd0.5Mg0.5Te barriers have been studied. The QW width affects the shape and spectral position of the Mn2+ intracenter luminescence (IL) band as a result of the crystal field being dependent on the position of the manganese ion with respect to the interface. Measured in identical experimental conditions, the exciton luminescence as compared to the IL is substantially higher in intensity in a QW than in a bulk CdMnTe crystal. Some samples of superlattices and bulk crystals exhibit, in addition to the conventional IL band near 2.0 eV, a weaker band at about 1.45 eV. This band apparently derives from intracenter transitions in the Mn2+ ions in the regions where the crystal lattice has the rock-salt rather than the conventional zinc blende structure.  相似文献   

2.
The experimentally obtained intensity decay curves for the 2-eV intracenter luminescence band of Mn2+ ions in Cd0.5Mn0.5Te semiconductor solid solution at a temperature of 77 K have been simulated by the Monte Carlo method. The calculations show that the initial nonexponential behavior of the intensity decay curves at the band wings, as well as the time dependence of the band peak energy, are determined by the fast migration of excitations through the Mn2+ ion subsystem. There are more than 200 jumps per each emitted photon, and the migration rate increases by almost two orders of magnitude in comparison with the rate at 4 K. The analysis of the simulation results and the calculation based on the experimental data show the interaction between ions to be resonant. The estimate derived from the Anderson criterion suggests that the excited state is not delocalized. An increase in the migration rate with an increase in temperature significantly reduces the inhomogeneous broadening dispersion.  相似文献   

3.
Giant magnetoresistance in Hg 1−x−y Mn x Fe y Te crystals is caused by clusters with “antiferromagnetic” (Mn-Te-Mn-Te, Mn-Te-Fe-Te) and “ferromagnetic” (Fe-Fe-Fe) ordering. The effect is due to the fact that the charge carriers taking part in electric current interact with the “ferromagnetic” cluster subsystem (Fe-Fe-Fe) magnetized to saturation and become spin-polarized. These spin-polarized charge carriers are strongly scattered by the “antiferromagnetic” Mn-Te-Mn-Te and Mn-Te-Fe-Te clusters, because the magnetic moments inside the clusters and resultant moments of clusters have chaotic orientations. Investigations of kinetic coefficients of Hg 1−x−y Mn x Fe y Te crystals before and after thermal treatment show that there is no marked correlation between the giant magnetoresistance and charge-carrier concentration, mobility, and band parameters of crystals. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 28–33, October, 2007.  相似文献   

4.
A hydrodynamic approach based on concentration, velocity and energy conservation equations is developed and used for the simulation of the electron transport in bulk HgCdTe. Both transient and steady-state regimes are simulated using input parameters calculated with a Monte Carlo simulator. The model is validated through a comparison in excellent agreement with Monte Carlo results.  相似文献   

5.
Exciton luminescence and intracenter luminescence (IL) of Mn2+ ions in Cd0.6Mn0.4Te/Cd0.5Mg0.5Te structures with quantum wells (QWs) 7, 13, and 26 monolayers thick were studied. It was established that in QWs the intensity of exciton luminescence with respect to that of IL is a few orders of magnitude higher than that in bulk crystals. The spectral position of manganese IL profile changes noticeably in going from a bulk crystal to a QW of the same composition. The nonexponential parts of the IL decay curves are determined by excitation migration and the cooperative upconversion process, whose contribution is high under strong excitation and efficient migration. At 77 K, the IL decay constant τ within the exponential region increases with decreasing QW thickness. The decay constant τ in a QW, unlike in a bulk Cd0.5Mn0.5Te crystal, decreases substantially under cooling from 77 to 4 K.  相似文献   

6.
The magnetic susceptibility χ of Hg 1−x Mn x S is investigated at temperatures T = 77–300 K for H = 4 kOe by the Faraday method before and after thermal treatment of the sample in compound vapors. The special features of χ are found to be caused by the presence in the crystals of Mn-S-Mn-S clusters of different sizes in which indirect antiferromagnetic exchange interaction of the Mn atoms occurs through the chalcogen atoms. Thermal treatment of samples in compound vapors causes changes of sizes of clusters existing in the crystal and even dissipation of the second-phase inclusions. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 59–63, March, 2008.  相似文献   

7.
The magnetic susceptibility χ/χ0 and the longitudinal Δρ zz 0 and transverse Δρ xx 0 magnetoresistances have been measured as functions of the hydrostatic pressure P ≤ 7 GPa at room temperature in the high-temperature ferromagnetic semiconductor Cd0.7Mn0.3GeAs2 with a chalcopyrite structure and the Curie temperature T c = 355 K. A pressure-induced metamagnetic transition from the low-magnetization state to the high-magnetization state has been observed in Cd0.7Mn0.3GeAs2 near the magnetic ordering temperature. This transition is accompanied by the hysteresis of the magnetic susceptibility and magnetoresistance.  相似文献   

8.
We have performed a complex investigation of the structure and the magnetic and electrical properties of a warwickite single crystal with the composition Fe1.91V0.09BO4. The results of Mössbauer measurements at T=300 K indicate that there exist “localized” (Fe2+, Fe3+) and “delocalized” (Fe2.5+) states distributed over two crystallographically nonequivalent positions. The results of magnetic measurements show that warwickite is a P-type ferrimagnet below T=130 K. The material exhibits hopping conductivity involving strongly interacting electrons. The experimental data are analyzed in comparison to the properties of the initial (unsubstituted) Fe2BO4 warwickite. The entire body of data on the electric conductivity and magnetization are interpreted on a qualitative basis.  相似文献   

9.
The curves of intracenter luminescence decay for Mn2+ ions in the Cd0.5Mn0.5Te semiconductor solid solution, obtained in a low-temperature experiment, have been simulated by the Monte Carlo method. The features of the kinetics of the 2-eV band in the time interval where significant nonexponentiality of relaxation at different points of the emission band profile manifests itself, as well the integral kinetics and energy relaxation, have been considered. Migration of ion excitations and concentration quenching (which was previously disregarded) are considered to be the main mechanisms determining the kinetic curve formation. It was established that excitation by 2.34-eV photons leads to both selective (intracenter) and band excitation of Mn2+ ions. Comparison of the results of numerical simulation and experiment showed that the characteristic values of the migration and quenching rates (W m and W q , respectively) are close in magnitude and W q, m ≈ 0.1/τ, where τ is the lifetime at the long-wavelength band wing with the exponential kinetics. The estimated quantum yield (0.56) indicates significant influence of the concentration quenching on the 2-eV luminescence quantum yield in Cd1 ? x Mn x Te and Zn1 ? x Mn x S crystals with a high concentration of Mn2+ ions.  相似文献   

10.
The effect of ultrarapid quenching from the melt and severe plastic torsional deformation under high pressure on the crystalline structure and the electrical, optical, and magnetic properties of a Ni2.16Mn0.84Ga alloy was studied. The electrical properties are discussed in terms of the Mott two-band model. The peculiarities of the magnetic properties are associated with the magnetism of itinerant electrons. The optical properties correlate with the variations in the electronic spectrum upon disordering of the alloy that follow from the results of the available energy-band-structure calculations.  相似文献   

11.
Metastable solid solutions (SS) Mn3FeTiSbO9 and Mn4FeTi2SbO12 with the ilmenite structure (space group R\(\bar 3\)) have been prepared by quenching at normal conditions. The compositions of the compounds have been justified using EDX spectroscopy and X-ray diffraction. The magnetic properties of SSs have been analyzed by comparison with ferrimagnetic ilmenite Mn2FeSbO6 (TN = 269 K) as a natural mineral and ceramics obtained at high pressure and high temperature. The solid solutions have been characterized as dilute magnetic systems formed as a result of substitution of nonmagnetic cations Ti4+ for a part of Fe3+ and Sb5+ cations. Mn3FeTiSbO9 is considered as a ferromagnetic with TN = 171 K and Mn4FeTi2SbO12 as a magnetic with the concentration of magnetic clusters below the percolation threshold.  相似文献   

12.
The dependences of the longitudinal magnetoresistance (Δρ zz 0)(P), transverse magnetoresistance (Δρ xx 0)(P), and magnetic susceptibility (χ/χ0(P)) on hydrostatic pressure P ≤ 7 GPa in the ferromagnetic semiconductor Cd0.7Mn0.3GeAs2 at room temperature were investigated.  相似文献   

13.
The electrical and galvanomagnetic properties of the Gd0.2Mn0.8Se solid solutions are investigated in zero magnetic field and in a field of 13 kOe in the temperature range of 80–400 K. The negative magnetoresistance below room temperature and hysteresis of the I–V characteristics are found. The change in the magnetoresistance sign and thermopower with increasing temperature is established. The carrier type is determined from the Hall constant; the difference between the thermopower and Hall coefficient signs at high temperatures is established. The experimental data are explained using the model of orbital ordering and spin-orbit interaction.  相似文献   

14.
The Raman spectra of Hg2F2 polycrystals are experimentally measured for the first time. The spectra of Hg2F2 are interpreted using X-ray diffraction analysis and group-theoretical treatment. The results obtained are discussed in comparison with the spectra of Hg2Hal2 crystals.  相似文献   

15.
The magnetic susceptibility, heat capacity, and spin-spin correlation functions of manganese oxide Pb3Mn7O15 are calculated by the Monte Carlo method. Two critical temperatures are determined: T 1 ≈ 20 K, above which a modulated structure along the hexagonal axis is formed, and T 2 ≈ 70 K, at which the long-range magnetic order disappears. The antiferromagnetic exchange interaction constant in a hexagonal plane is estimated to be J 1 ~ 7 K, and the antiferromagnetic and ferromagnetic exchange interaction constants between hexagonal planes are calculated to be J 2 ~ 3 K and K ~ 50 K, respectively.  相似文献   

16.
This paper addresses the synthesis structural and electrochemical properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries. The charge–discharge reaction of Li/LiPF6-EC–DEC/LiFe0.5Mn0.5PO4 cell carried out at the 1-C rate shows a capacity retention of 128 mAh/g. The local structure of the delithiated Li x Fe0.5Mn0.5PO4 phases have been studied by Fourier transform infrared spectroscopy and magnetometry. Spectral features indicate that the structure of the delithiated phase remains in the orthorhombic system. The compositional dependence of the magnetic moment is found to be in quantitative agreement with the theoretical value predicted for oxidation of M 2+ ions in the high spin state. Paper presented at the 11th Euro-Conference on Science and Technology of Ionics, Batz-sur-Mer, France, 9–15 Sept. 2007  相似文献   

17.
Ag1.8Mn8O16 nanorods have been synthesized on a large scale by a facile hydrothermal route. The effects of experimental conditions including reaction time and reactant concentration on the phase and morphology of the final products were investigated systematically. The products were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) spectroscopy. Electrochemical lithium-storage capabilities of the as-formed nanostructured Ag1.8Mn8O16 were also evaluated. Interestingly, the as-formed Ag1.8Mn8O16 nanorods possess the unique one-dimensional structure and in situ silver loading, which are beneficial features for electrochemical lithium-storage applications. The results suggest their potential use as cathode materials for lithium-ion batteries.  相似文献   

18.
Fe0.27Mn0.73S single crystals were studied. A magnetic transition is detected near 197 K, which is accompanied by anomalies of the thermal, electrical, and resonant properties.  相似文献   

19.
Mn0.5Zn0.5Fe2O4 ferrite nanoparticles with tunable Curie temperature and saturation magnetization are synthesized using hydrothermal co-precipitation method. Particle size is controlled in the range of 54 to 135 Å by pH and incubation time of the reaction. All the particles exhibit super-paramagnetic behaviour at room temperature. Langevin’s theory incorporating the interparticle interaction was used to fit the virgin curve of particle magnetization. The low-temperature magnetization follows Bloch spin wave theory. Curie temperature derived from magnetic thermogravimetric analysis shows that Curie temperature increases with increasing particle size. Using these particles magnetic fluid is synthesized and magnetic characterization is reported. The monolayer coating of surfactant on particle surface is confirmed using thermogravimetric measurement. The same technique can be extended to study the magnetic phase transition. The Curie temperature derived using this measurement complies with the low-temperature magnetic measurement. The room-temperature and high-temperature magnetization measurements are also studied for magnetic fluid systems. The magnetic parameters derived for fluid are in good agreement with those obtained for the particle system.  相似文献   

20.
Samples of BiFe0.93Mn0.07O3 with different specific surface area were synthesized for the first time by ultrasonic spray pyrolysis. The resulting powders consist of porous particles of a spherical shape of medium size ~0.5 μm and have record values of residual magnetization and coercive force. It is found that the magnetic properties of the porous powder particles are determined by the distortion of the crystal lattice and the presence of uncompensated magnetic moments of iron ions on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号