首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have analyzed the evolution of mass of a stationary black hole in the standard FRW cosmological model. The evolution is determined specifically about the time of transition from the earlier matter to the later exotic dark energy dominated universe. It turns out that the accretion rate of matter on the black hole of mass was approximately O(1020) higher than the accretion rate of exotic dark energy at the time of transition.  相似文献   

2.
In this article, our aim is to consider inflation, dark energy and dark matter in the framework of a real scalar field. To this end, we use the quintessence approach. We have tried a real scalar field with a specific self-interaction potential in a spacially flat universe. Numerical results indicate that this potential can drive the expansion of the universe in three distinct phases. The first phase behaves as an inflationary expansion. For this stage, setting the scalar field’s initial value to ϕ 0≥1.94 leads to N 3 68\mathcal{N}\geq 68 favored by observation. After the inflationary phase, the scalar field starts an oscillatory behavior which averages to a =0\bar{w}=0 fluid. This stage can be taken as a cold dark matter (p≈0) epoch expected from works on the structure formation issue. Observations and cosmological models indicate that t inf ≈10−35 s and the matter dominated lasts for t m ≈1017 s, hence (\fractmtinf)obs ? 1052(\frac{t_{m}}{t_{inf}})_{obs}\approx10^{52}. We have shown that the present model can satisfy such a constraint. Finally, the scalar field leaves the oscillatory behavior and once again enters a second inflationary stage which can be identified with the recent accelerated expansion of the universe. We have also compared our model with the ΛCDM model and have found a very good agreement between the equation of state parameter of both of models during the DM and DE era.  相似文献   

3.
The present study deals with dissipative future universe without big rip in context of Eckart formalism. The generalised Chaplygin gas, characterised by equation of state p=-\fracAr\frac1ap=-\frac{A}{\rho^{\frac{1}{\alpha}}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late time. It is demonstrated that, if the cosmic dark energy behaves like a fluid with equation of state p=ωρ; ω<−1 as well as Chaplygin gas simultaneously then the big rip problem does not arise and the scale factor is found to be regular for all time.  相似文献   

4.
In this paper, two modified Ricci models are considered as the candidates of unified dark matter–dark energy. In model one, the energy density is given by rMR=3Mpl(aH2+b[(H)\dot])\rho_{\mathrm{MR}}=3M_{\mathrm{pl}}(\alpha H^{2}+\beta\dot{H}), whereas, in model two, by rMR=3Mpl(\fraca6 R+g[(H)\ddot]H-1)\rho_{\mathrm{MR}}=3M_{\mathrm{pl}}(\frac{\alpha}{6} R+\gamma\ddot{H}H^{-1}). We find that they can explain both dark matter and dark energy successfully. A constant equation of state of dark energy is obtained in model one, which means that it gives the same background evolution as the wCDM model, while model two can give an evolutionary equation of state of dark energy with the phantom divide line crossing in the near past.  相似文献   

5.
We make the cosmological constant, Λ, into a field and restrict the variations of the action with respect to it by causality. This creates an additional Einstein constraint equation. It restricts the solutions of the standard Einstein equations and is the requirement that the cosmological wave function possess a classical limit. When applied to the Friedmann metric it requires that the cosmological constant measured today, t U , be L ~ tU-2 ~ 10-122{\Lambda \sim t_{U}^{-2} \sim 10^{-122}} , as observed. This is the classical value of Λ that dominates the wave function of the universe. Our new field equation determines Λ in terms of other astronomically measurable quantities. Specifically, it predicts that the spatial curvature parameter of the universe is Wk0 o -k/a02H2=-0.0055{\Omega _{\mathrm{k0}} \equiv -k/a_{0}^{2}H^{2}=-0.0055} , which will be tested by Planck Satellite data. Our theory also creates a new picture of self-consistent quantum cosmological history.  相似文献   

6.
We confront dark energy models which are currently similar to ΛCDM theory with observational data which include the SNe data, matter density perturbations and baryon acoustic oscillations data. DE cosmology under consideration may evolve to Big Rip, type II or type III future singularity, or to Little Rip or Pseudo-Rip universe. It is shown that matter perturbations data define more precisely the possible deviation from ΛCDM model than consideration of SNe data only. The combined data analysis proves that DE models under consideration are as consistent as ΛCDM model. We demonstrate that growth of matter density perturbations may occur at sufficiently small background density but still before the possible disintegration of bound objects (like clusters of galaxies, galaxies, etc.) in Big Rip, type III singularity, Little Rip or Pseudo-Rip universe. This new effect may bring the future universe to chaotic state well before disintegration or Rip.  相似文献   

7.
We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Wbh2 = 0.02263+0.00184-0.00162 (1s)+0.00213-0.00195 (2s){\Omega_{b}h^{2}\,{=}\,0.02263^{+0.00184}_{-0.00162} (1\sigma)^{+0.00213}_{-0.00195} (2\sigma)}, Bs = 0.7788+0.0736-0.0723(1s)+0.0918-0.0904 (2s){B_{s}\,{=}\,0.7788^{+0.0736}_{-0.0723}(1\sigma)^{+0.0918}_{-0.0904} (2\sigma)}, a = 0.1079+0.3397-0.2539 (1s)+0.4678-0.2911 (2s){\alpha\,{=}\,0.1079^{+0.3397}_{-0.2539} (1\sigma)^{+0.4678}_{-0.2911} (2\sigma)}, B = 0.00189+0.00583-0.00756(1s)+0.00660-0.00915 (2s){B\,{=}\,0.00189^{+0.00583}_{-0.00756}(1\sigma)^{+0.00660}_{-0.00915} (2\sigma)}, and H0=70.711+4.188-3.142 (1s)+5.281-4.149(2s){H_{0}=70.711^{+4.188}_{-3.142} (1\sigma)^{+5.281}_{-4.149}(2\sigma)}.  相似文献   

8.
Recent observations on Type-Ia supernovae and low density (Ω m =0.3) measurement of matter including dark matter suggest that the present-day universe consists mainly of repulsive-gravity type ‘exotic matter’ with negative-pressure often said ‘dark energy’ (Ω x =0.7). But the nature of dark energy is mysterious and its puzzling questions, such as why, how, where and when about the dark energy, are intriguing. In the present paper the authors attempt to answer these questions while making an effort to reveal the genesis of dark energy and suggest that ‘the cosmological nuclear binding energy liberated during primordial nucleo-synthesis remains trapped for a long time and then is released free which manifests itself as dark energy in the universe’. It is also explained why for dark energy the parameter w=-\frac23w=-\frac{2}{3} . Noting that w=1 for stiff matter and w=\frac13w=\frac{1}{3} for radiation; w=-\frac23w=-\frac{2}{3} is for dark energy because “−1” is due to ‘deficiency of stiff-nuclear-matter’ and that this binding energy is ultimately released as ‘radiation’ contributing “ +\frac13+\frac{1}{3} ”, making w=-1+\frac13=-\frac23w=-1+\frac{1}{3}=-\frac{2}{3} . When dark energy is released free at Z=80, w=-\frac23w=-\frac{2}{3} . But as on present day at Z=0 when the radiation-strength-fraction (δ), has diminished to δ→0, the w=-1+d\frac13=-1w=-1+\delta\frac{1}{3}=-1 . This, almost solves the dark-energy mystery of negative pressure and repulsive-gravity. The proposed theory makes several estimates/predictions which agree reasonably well with the astrophysical constraints and observations. Though there are many candidate-theories, the proposed model of this paper presents an entirely new approach (cosmological nuclear energy) as a possible candidate for dark energy.  相似文献   

9.
We theoretically study the squeezing effect in a 3-wave mixing process, generated by the operator S3 o exp[m(a1a2-a1fa2f)+n(a1a3-a1fa3f)]S_{3}\equiv \exp[\mu(a_{1}a_{2}-a_{1}^{\dagger}a_{2}^{\dagger})+\nu(a_{1}a_{3}-a_{1}^{\dagger}a_{3}^{\dagger})]. The corresponding 3-mode squeezed vacuum state in Fock space and its uncertainty relation are presented. It turns out that S 3 may exhibit enhanced squeezing. By virtue of integration within an ordered product (IWOP) of operators, we also give the S 3’s normally ordered expansion. Finally, we calculate the Wigner function of 3-mode squeezed vacuum state by using the Weyl ordering invariance under similar transformations.  相似文献   

10.
A five dimensional Kaluza-Klein space-time is considered in the presence of a perfect fluid source with variable G and Λ. An expanding universe is found by using a relation between the metric potential and an equation of state. The gravitational constant is found to decrease with time as Gt −(1−ω) whereas the variation for the cosmological constant follows as Λ∼t −2, L ~ ([(R)\dot]/R)2\Lambda \sim (\dot{R}/R)^{2} and L ~ [(R)\ddot]/R\Lambda \sim \ddot{R}/R where ω is the equation of state parameter and R is the scale factor.  相似文献   

11.
We formulate a modified theory of gravity to an equivalent second order gravity theory for a Lagrangian containing R and \frac1R{\frac{1}{R}} terms by introducing an auxiliary variable in a spatially homogeneous and isotropic background. We present a few analytical solutions of evolution equation for the deceleration parameter q as a function of the scale factor; specially in one solution, the universe evolves continuously from q = 1 (i.e. like a radiation dominated era) to q = -\frac12{q= -\frac{1}{2}} dark energy dominated late time accelerating phase when the universe is sufficiently old. The solution is supported by numerical results.  相似文献   

12.
The deep quench obstacle problem models phase separation at low temperatures. During phase separation, domains of high and low concentration are formed, then coarsen or grow in average size. Of interest is the time dependence of the dominant length scales of the system. Relying on recent results by Novick-Cohen and Shishkov (Discrete Contin. Dyn. Syst. B 25:251–272, 2009), we demonstrate upper bounds for coarsening for the deep quench obstacle problem, with either constant or degenerate mobility. For the case of constant mobility, we obtain upper bounds of the form t 1/3 at early times as well as at times t for which E(t) £ \frac(1-[`(u)]2)4E(t)\le\frac{(1-\overline{u}^{2})}{4}, where E(t) denotes the free energy. For the case of degenerate mobility, we get upper bounds of the form t 1/3 or t 1/4 at early times, depending on the value of E(0), as well as bounds of the form t 1/4 whenever E(t) £ \frac(1-[`(u)]2)4E(t)\le\frac{(1-\overline{u}^{2})}{4}.  相似文献   

13.
In this paper, we consider the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations with initial data in the critical Besov-Sobolev type spaces B{\mathcal{B}} and B-\frac12,\frac124{\mathcal{B}^{-\frac12,\frac12}_4} (see Definitions 1.1 and 1.2 below). In particular, we proved that there exists a positive constant C such that (ANS ν ) has a unique global solution with initial data u0 = (u0h, u03){u_0 = (u_0^h, u_0^3)} which satisfies ||u0h||B exp(\fracCn4 ||u03||B4) £ c0n{\|u_0^h\|_{\mathcal{B}} \exp\bigl(\frac{C}{\nu^4} \|u_0^3\|_{\mathcal{B}}^4\bigr) \leq c_0\nu} or ||u0h||B-\frac12,\frac124 exp(\fracCn4 ||u03||B-\frac12,\frac1244) £ c0n{\|u_0^h\|_{\mathcal{B}^{-\frac12,\frac12}_{4}} \exp \bigl(\frac{C}{\nu^4} \|u_0^3\|_{\mathcal{B}^{-\frac12,\frac12}_{4}}^4\bigr)\leq c_0\nu} for some c 0 sufficiently small. To overcome the difficulty that Gronwall’s inequality can not be applied in the framework of Chemin-Lerner type spaces, [(Lpt)\tilde](B){\widetilde{L^p_t}(\mathcal{B})}, we introduced here sort of weighted Chemin-Lerner type spaces, [(L2t, f)\tilde](B){\widetilde{L^2_{t, f}}(\mathcal{B})} for some apropriate L 1 function f(t).  相似文献   

14.
The complex impedance of the Ag2ZnP2O7 compound has been investigated in the temperature range 419–557 K and in the frequency range 200 Hz–5 MHz. The Z′ and Z′ versus frequency plots are well fitted to an equivalent circuit model. Dielectric data were analyzed using complex electrical modulus M* for the sample at various temperatures. The modulus plot can be characterized by full width at half-height or in terms of a non-exponential decay function f( \textt ) = exp( - \textt/t )b \phi \left( {\text{t}} \right) = \exp {\left( { - {\text{t}}/\tau } \right)^\beta } . The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law: s( w) = s\textdc + \textAwn \sigma \left( \omega \right) = {\sigma_{\text{dc}}} + {\text{A}}{\omega^n} . The conductivity σ dc follows the Arrhenius relation. The near value of activation energies obtained from the analysis of M″, conductivity data, and equivalent circuit confirms that the transport is through ion hopping mechanism dominated by the motion of the Ag+ ions in the structure of the investigated material.  相似文献   

15.
In this paper we consider FRW cosmology in F(R,f){F(R,\phi)} gravity. It is shown that in particular cases the bouncing behavior may appears in the model whereas the equation of state (EoS) parameter may crosses the phantom divider. For the dynamical universe, quantitatively we also find parameters in the model which satisfies two independent tests:the model independent Cosmological Redshift Drift (CRD) test and the type Ia supernova luminosity distances.  相似文献   

16.
We investigate about the stability of generalized QCD ghost dark energy model against perturbations in the FRW background. For this purpose, we use the squared sound speed $v_{s}^{2}$ whose sign determines the stability of the model. We explore the stability of this model in the presence/absence of interaction between dark energy and dark matter in both flat and non-flat geometry. In all cases we find almost a same result. Based on the square sound speed analysis, due to the existence of a free parameter in this model, the model is theoretically capable to lead a dark energy dominated stable universe. However, observational constraints rule out such a chance. In conclusion, we find evidences that the generalized ghost dark energy might can not lead to a stable universe favored by observations at the present time.  相似文献   

17.
18.
If X = X(t, ξ) is the solution to the stochastic porous media equation in O ì Rd, 1 £ d £ 3,{\mathcal{O}\subset \mathbf{R}^d, 1\le d\le 3,} modelling the self-organized criticality (Barbu et al. in Commun Math Phys 285:901–923, 2009) and X c is the critical state, then it is proved that ò0m(O\Ot0)dt < ¥,\mathbbP-a.s.{\int^{\infty}_0m(\mathcal{O}{\setminus}\mathcal{O}^t_0)dt<{\infty},\mathbb{P}\hbox{-a.s.}} and limt?¥ òO|X(t)-Xc|dx = l < ¥, \mathbbP-a.s.{\lim_{t\to{\infty}} \int_\mathcal{O}|X(t)-X_c|d\xi=\ell<{\infty},\ \mathbb{P}\hbox{-a.s.}} Here, m is the Lebesgue measure and Otc{\mathcal{O}^t_c} is the critical region {x ? O; X(t,x)=Xc(x)}{\{\xi\in\mathcal{O}; X(t,\xi)=X_c(\xi)\}} and X c (ξ) ≤ X(0, ξ) a.e. x ? O{\xi\in\mathcal{O}}. If the stochastic Gaussian perturbation has only finitely many modes (but is still function-valued), limt ? ¥ òK|X(t)-Xc|dx = 0{\lim_{t \to {\infty}} \int_K|X(t)-X_c|d\xi=0} exponentially fast for all compact K ì O{K\subset\mathcal{O}} with probability one, if the noise is sufficiently strong. We also recover that in the deterministic case  = 0.  相似文献   

19.
The general form of the anisotropy parameter of the expansion for Bianchi type-III metric is obtained in the presence of a single diagonal imperfect fluid with a dynamically anisotropic equation of state parameter and a dynamical energy density in general relativity. A special law is assumed for the anisotropy of the fluid which reduces the anisotropy parameter of the expansion to a simple form (D μ H-2V-2{\Delta\propto H^{-2}V^{-2}}, where Δ is the anisotropy parameter, H is the mean Hubble parameter and V is the volume of the universe). The exact solutions of the Einstein field equations, under the assumption on the anisotropy of the fluid, are obtained for exponential and power-law volumetric expansions. The isotropy of the fluid, space and expansion are examined. It is observed that the universe can approach to isotropy monotonically even in the presence of an anisotropic fluid. The anisotropy of the fluid also isotropizes at later times for accelerating models and evolves into the well-known cosmological constant in the model for exponential volumetric expansion.  相似文献   

20.
In this paper, we revisit the generalized Chaplygin gas (GCG) model as a unified dark matter and dark energy model. The energy density of GCG model is given as ρ GCG/ρ GCG0=[B s +(1−B s )a −3(1+α)]1/(1+α), where α and B s are two model parameters which will be constrained by type Ia supernova as standard candles, baryon acoustic oscillation as standard rulers and the seventh year full WMAP data points. In this paper, we will not separate GCG into dark matter and dark energy parts any more as adopted in the literature. By using the Markov Chain Monte Carlo method, we find the results a = 0.00126-0.00126- 0.00126+ 0.000970+ 0.00268\alpha=0.00126_{-0.00126- 0.00126}^{+ 0.000970+ 0.00268} and Bs = 0.775-0.0161- 0.0338+ 0.0161+ 0.0307B_{s}= 0.775_{-0.0161- 0.0338}^{+ 0.0161+ 0.0307}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号