首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High quality transparent conductive gallium-doped zinc oxide (GZO) thin films were deposited on glass substrates using rf-magnetron sputtering system at the temperature ranging from room temperature (RT) to 500 °C. The temperature-dependence of Ga doping effect on the structural, optical and electrical properties in ZnO has been investigated. For the GZO thin films deposited at over 200 °C, (103) orientation was strongly observed by X-ray diffraction analysis, which is attributed to the substitution of Ga elements into Zn site. X-ray photoelectron spectroscopy measurements have confirmed that oxygen vacancies were generated at the temperature higher than 300 °C. This might be due to the effective substitution of Ga3+ for Zn site at higher temperature. It was also found that the optical band gap increases with deposition temperature. The optical transmittance of GZO thin films was above 87% in the visible region. The GZO thin films grown at 500 °C showed a low electrical resistivity of 4.50 × 10?4 Ω cm, a carrier concentration of 6.38 × 1020 cm?3 and a carrier mobility of 21.69 cm2/V.  相似文献   

2.
The heat treatment effects on structural and electrical properties of thermally deposited AgIn5S8 thin films have been investigated. By increasing the annealing temperature of the sample from 450 to 500 K, we observed a change in the crystallization direction from (420) to (311). Further annealing of the AgIn5S8 films at 550, 600 and 650 K resulted in larger grain size in the (311) preferred direction. The room temperature electrical resistivity, Hall coefficient and Hall mobility were significantly influenced by higher annealing temperatures. Three impurity levels at 230, 150, and 78 meV were detected for samples annealed at 350 K. The electrical resistivity decreased by four orders of magnitude when the sample annealing temperature was raised from 350 to 450 K. The temperature dependent electrical resistivity and carrier concentration of the thin film samples were studied in the temperature ranges of 25-300 K and 140-300 K, respectively. A degenerate-nondegenerate semiconductor transition at approximately 180 was observed for samples annealed at 450 and 500 K. Similar type of transition was observed at 240 K for samples annealed at 600 and 650 K.  相似文献   

3.
Optical modulators based upon carrier depletion have proven to be effective at achieving high speed operation in silicon. However, when incorporated into Mach‐Zehnder Interferometer structures they require electronic driver amplifiers to provide peak to peak drive voltages of a few volts in order to achieve a large extinction ratio. For minimal performance degradation caused by the electrical connection between the driver and the modulator monolithic integration in the front end of the process is the preferred integration route. The formation of electronic driver amplifiers in BiCMOS is advantageous over CMOS in terms of achievable performance versus cost. In this work the first monolithic photonic integration in the electronic front‐end of a high‐performance BiCMOS technology process is demonstrated. Modulation at 10 Gbit/s is demonstrated with an extinction ratio >8 dB. The potential scalability of both the silicon photonic and BiCMOS elements make this technology an attractive prospect for the future.  相似文献   

4.
We report on the electrical properties of a-IGZO thin films prepared by reactive sputtering. Without oxygen injection, dc resistivity measured at room temperature is ρ300K = 1.22 × 10−3 Ωm. The lowest resistivity ρ300K = 4.86 × 10−5 Ωm is obtained at a certain oxygen supply into the deposition process. Hall effect measurements of these films reveal a metallic-like behavior from mobility and carrier concentration vs. temperature in the range 15–300 K whereas films deposited without oxygen or for the highest oxygen flows behave as semiconductors. These enhanced electrical properties are connected to the oxygen vacancies and the local coordination structure around the In3+ cations.  相似文献   

5.
Small signal modal gain measurements have been performed on two-section ridge waveguide InAs/InP (100) quantum-dot amplifiers that we have fabricated with a peak gain wavelength around 1.70 μm. The amplifier structure is suitable for monolithic active-passive integration, and the wavelength region and wide gain bandwidth are of interest for integrated devices in biophotonic applications. A 65 nm blue shift of the peak wavelength in the gain spectrum has been observed with an increase in injection current density from 1,000 to 3,000 A/cm2. The quantum-dot amplifier gain spectra have been analyzed using a quantum-dot rate-equation model that considers only the carrier dynamics. The comparison between measured and simulated spectra shows that two effects in the quantum-dot material introduce this large blue shift in the gain spectrum. The first effect is the carrier concentration dependent state filling with carriers of the bound excited and ground states in the dots. The second effect is the decrease in carrier escape time from the dots to the wetting layer with decreasing dot size.  相似文献   

6.
In this paper, we summarize the results of an extensive investigation on the properties of MOS-type light emitting devices based on silicon nanostructures. The performances of crystalline, amorphous and Er-doped Si nanostructures are presented and compared. We show that all devices are extremely stable and robust, resulting in an intense room temperature electroluminescence (EL) at around 900 nm or at 1.54 μm. Amorphous nanostructures may constitute an interesting system for the monolithic integration of optical and electrical functions in Si ULSI technology. In fact, they exhibit an intense room temperature EL with the advantage to be formed at a temperature of only 900 °C, remarkably lower than the temperature needed for the formation of Si nanocrystals (1100 °C or higher). To improve the extraction of the light, we coupled the emitting system with a 2D photonic crystal structure properly fabricated with ULSI technology to reduce the total internal reflection of the emitted light. We demonstrate that the extraction efficiency is increased by a factor of 4. Finally, the light emission from devices based on Er-doped Si nanoclusters has been studied and in particular we have investigated the luminescence quenching processes limiting quantum efficiency in these devices. In fact the carrier injection, that determines the excitation of Er ions through electron–hole recombination, at the same time produces an efficient non-radiative Auger de-excitation with trapped carriers. These data are presented and the implications on the device performances discussed.  相似文献   

7.
Transparent and conductive Ga-doped ZnO (ZnO:Ga) films were post-annealed after sputter deposition, and their structural and electrical properties were investigated. Post-annealing led to an improvement of crystallinity along the [001] direction, but did not change lateral grain size. Therefore, carrier concentration and electron mobility of films were analyzed as a function of crystallinity. The electrical parameters were obtained with both optical reflectance based on the Drude free-electron model and the Hall method, and similar tendencies were observed within the two methods. Even though the lowest resistivity was demonstrated by the film annealed at 550 °C, the optimum values for carrier concentration and mobility were observed in films with different post-annealing temperatures.  相似文献   

8.
We perform a systematic investigation on the silicon digital 1×2 electro-optic switch based on a microdisk resonator with the refractive index tuned by carrier injection and extraction. Analytical expressions are proposed to quantify the crosstalk, insertion loss and switching time, and then they are used to analyze the effect of the coupling-in/out coefficient, internal loss, and quality factor. Both electron beam lithography and photolithography were employed to construct the asymmetrically coupled microdisk resonator integrated with a p-i-n diode. A high-performance switch has been demonstrated with a crosstalk of less than −20 dB, a switching time of ∼2 ns, as well as a power consumption of 0.46 mW. Moreover, the switching of optical signals with high data rates has been characterized and analyzed under different working conditions.  相似文献   

9.
卢曰瑞 《中国物理 B》2017,26(3):34201-034201
Phosphorene is a two-dimensional semiconductor with layers-dependent bandgap in the near-infrared range and it has attracted a great deal of attention due to its high anisotropy and carrier mobility. The highly anisotropic nature of phosphorene has been demonstrated through Raman and polarization photoluminescence measurements. Photoluminescence spectroscopy has also revealed the layers-dependent bandgap of phosphorene. Furthermore, due to the reduced dimensionality and screening in phosphorene, excitons and trions can stably exist at elevated temperatures and have large binding energies. The exciton and trion dynamics are thus detected by applying electrical bias or optical injection to the phosphorene system. Finally, various optical and optoelectronic applications based on phosphorene have been demonstrated and discussed.  相似文献   

10.
Manipulation of antiferromagnetic (AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in [Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction, the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.  相似文献   

11.
The samples of Cu1−xPtxFeO2 (0 ≤ x ≤ 0.05) delafossite have been synthesized by solid-state reaction method to investigate their optical and electrical properties. The properties of electrical resistivity and Seebeck coefficient were measured in the high temperature ranging from 300 to 960 K, and the Hall effect and the optical properties were measured at room temperature. The obtained results of Seebeck showed the samples are p-type conductor. The optical properties at room temperature exhibited the samples are transparent visible light material with optical direct gap 3.45 eV. The low electrical resistivity, hole mobility and carrier density at room temperature displayed value ranging from 0.29 to 0.08 Ω cm, 1.8 to 8.6 cm2/V s and 1.56 × 1018 to 4.04 × 1019 cm−3, respectively. The temperature range for transparent visible light is below 820 K because the direct energy gap contains value above 3.1 eV. Consequently, the Cu1−xPtxFeO2 delafossite enhance performance for materials of p-type transparent conducting oxide (TCO) with low electrical resistivity.  相似文献   

12.
Electroluminescence (EL) spectra of blue InGaN/GaN multiple-quantum-well light-emitting diode (LED) have been investigated over a wide range of injection current (0.001–200 mA) and at various temperatures (6–300 K). Surprisingly, with increasing the injection current the EL peak energy shows an initial blueshift accompanied by a broadening of the EL linewidth at low temperatures (below 30 K). This trend differs from the usual photoluminescence (PL) measurement results, which have shown that with increasing the optical excitation power the PL peak energy gave an initial blueshift accompanied by a narrowing of the PL linewidth at low temperatures. The anomalous current behavior of the EL spectra may be attributed to electron leakage results in the failure of Coulomb screening effect and the relative enhancement of the low-energetic localized state filling at low temperatures and low currents. The electron leakage for the LED is further confirmed by both the current dependence of the EL intensity and the temperature dependence of the EL efficiency.  相似文献   

13.
An automotive fuel injector has been retrofitted with novel electrostatic components in order to improve the primary atomization and dispersion characteristics of the device. A specific design variant is presented and discussed outlining how a conventional fuel injector may be modified to house electrostatic components. With 2 bar gauge injection pressure and an electrical power of 2 mW, the injector can successfully supply intermittently charged fuel, containing spray specific charge levels up to ~1.4 C/m3. Root mean square (RMS) spray specific charge and RMS total current vs. voltage curves are presented as a function of voltage pulse and solenoid valve frequencies for both low and high flow-rate operation. The fuel injector was able to operate in a stable manner at pulse train frequencies up to 20 Hz and the charge injection mechanism was identical to previous steady voltage and pulsed voltage steady flow systems. An optimal synchronization between the high voltage (HV) pulse frequency and solenoid valve frequency has been determined, allowing for the prevention of electrical breakdown events within the inter-electrode gap over a negative voltage ranging from 0 to 4.5 kV.  相似文献   

14.
Electrical treeing is one of the major breakdown mechanisms for solid dielectrics subjected to high electrical stress. In this paper, the characteristics of electrical tree growth in XLPE samples have been investigated. XLPE samples are obtained from a commercial XLPE power cable, in which electrical trees have been grown from pin to plane in the frequency range of 4000-10,000 Hz, voltage range of 4-10 kV, and the distances between electrodes of 1 and 2 mm. Images of trees and their growing processes were taken by a CCD camera. The fractal dimensions of electric trees were obtained by using a simple box-counting technique. The results show that the tree growth rate and fractal dimension was bigger when the frequency or voltage was higher, or the distance between electrodes was smaller. Contrary to our expectation, it has been found that when the distance between electrodes changed from 1 to 2 mm, the required voltage of the similar electrical trees decreased only 1or 2 kV. In order to evaluate the difficulties of electrical tree propagation in different conditions, a simple energy threshold analysis method has been proposed. The threshold energy, which presents the minimum energy that a charge carrier in the well at the top of the tree should have to make the tree grow, has been computed considering the length of electrical tree, the fractal dimension, and the growth time. The computed results indicate that when one of the three parameters of voltage, frequency, and local electric field increase, the trends of energy threshold can be split into 3 regions.  相似文献   

15.
《Current Applied Physics》2014,14(8):1036-1040
We have fabricated hafnium–indium–zinc-oxide (HfInZnO) thin film transistors (TFT) with indium–tin-oxide (ITO) interlayer. Compared with conventional HfInZnO-TFT, the electrical performance and bias stability of HfInZnO-TFTs with ITO interlayer are improved. HfInZnO-TFT with 4-nm-thick ITO interlayer shows a high mobility of 7.2 cm2/V s, a low threshold voltage of 0.13 V and a better bias stability. The performance enhancement is attributed to a decrease in interface trap state and an increase in carrier concentration. It suggests that introducing ITO interlayer at the ALD Al2O3/HfInZnO interface is an effective way to improve the electrical performance and bias stability.  相似文献   

16.
Fully compatible CMOS capacitive devices have been developed in order to obtain electrically stimulated luminescence. By high-temperature annealing in N2 atmosphere PECVD non-stoichiometric silica layers, silicon nanocrystals were formed. Photoluminescence, as well as structural studies, were carried out on these layers to decide the best material composition, which lies next to 17% of silicon excess. Under pulsed electrical stimulation, devices show sharp, narrow, less than 5 μs and pulse-frequency-independent, luminescence peaks at the end of the stimulation pulse. Current analysis on those capacities show hole injection at the beginning and electron injection at the end of the stimulation pulses. It is seen that no positive pulses are needed for attaining bipolar charge injection. Electroluminescence is detected when biasing with negative pulses at about 15 V and increasing up to 50 V. The electroluminescence spectrum matches photoluminescence one, allowing assigning both luminescent radiation to the same emission mechanism, that is, electron–hole recombination within the silicon nanocrystals.  相似文献   

17.
SnO2 thin films have been deposited on glass substrates by pulsed Nd:YAG laser at different oxygen pressures, and the effects of oxygen pressure on the physical properties of SnO2 films have been investigated. The films were deposited at substrate temperature of 500°C in oxygen partial pressure between 5.0 and 125 mTorr. The thin films deposited between 5.0 to 50 mTorr showed evidence of diffraction peaks, but increasing the oxygen pressure up to 100 mTorr, three diffraction peaks (110), (101) and (211) were observed containing the SnO2 tetragonal structure. The electrical resistivity was very sensitive to the oxygen pressure. At 100 mTorr the films showed electrical resistivity of 4×10−2 Ω cm, free carrier density of 1.03×1019 cm−3, mobility of 10.26 cm2 V−1 s−1 with average visible transmittance of ∼87%, and optical band gap of 3.6 eV.  相似文献   

18.
High-efficiency, high-speed, tapered-oxide-apertured vertical-cavity surface-emitting lasers (VCSELs) emitting at 980 nm have been demonstrated. By carefully engineering the tapered oxide aperture, the mode volume can be greatly reduced without adding much optical scattering loss for the device sizes of interest. Consequently, these devices can achieve higher bandwidth at lower current and power dissipation. In addition, the parasitics are reduced by implementing deep oxidation layers and an improved p-doping scheme in the top mirror. Our devices show modulation bandwidth exceeding 20 GHz, a record for 980 nm VCSELs. Moreover, 35 Gb/s operation has been achieved at only 10 mW power dissipation. This corresponds to a data-rate/power-dissipation ratio of 3.5 Gbps/mW. Most importantly, our device structure is compatible with existing manufacturing processes and can be easily manufactured in large volume making them attractive for optical interconnects.  相似文献   

19.
ZnO:Al (AZO) thin films were deposited on glass substrates by RF magnetron sputtering at room temperature and post-annealed in rapid thermal annealing (RTA) system. The effect of post-annealing temperature on the structural, optical, and electrical properties was investigated. As the post-annealing temperature increased, electrical conductivity is deteriorated due to a decrease in the mobility or carrier concentration, gradually. According to X-ray photoelectron spectroscopy (XPS) analysis, the behavior of mobility and carrier concentration is attributed to increase the O2 absorption on film surface, which act as rising the barrier potential at the low post-annealing temperature (200 °C) and reducing the density of donor-like defects at the high post-annealing temperature (400 °C). In case of post-annealing, the minimization of O2 absorption is a very important factor to obtain better electrical properties.  相似文献   

20.
We report the use of strain-balanced quantum-well structures to generate high carrier density, high mobility layers suitable for power field effect transistor (FET) applications. Standard designs of modulation-doped heterojunctions have a sheet carrier density limited to a maximum of ∼3 ×  1012cm−2, while doped channel devices allow higher densities, but with degraded mobility. By combining the technique of delta-doping with the use of a compositionally graded InGaAs quantum well, grown strain balanced on InP, high mobilities and excellent saturation drift velocities have been obtained for sheet densities of 4–5 ×  1012cm−2. This paper describes the structure and electrical properties of the layers and assesses their potential for FETs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号