首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct electrical conductivity and dependencies of complex electrical modulus vs. temperature and frequency have been measured on glasses from the MnF2–ZnF2–NaPO3 system. These glasses are sensitive to atmospheric humidity and as a consequence, the electrical conductivity increases up to temperature of 50 °C. A hydrated layer is created by the effect of water and leads to the significant increase of the electrical conductivity in the case of 0MnF2–20ZnF2–80NaPO3 glass. This behavior is governed by Arrhenius relation where the values of activation energy are increasing and values of the electrical conductivity are decreasing with the amount of MnF2. Dielectric measurements show that a heterogeneous phase is formed in the bulk of glasses. This may be seen when plotting complex electrical modulus in the complex plane. The records made by the light microscope confirmed the occurrence of the other phase in the bulk of glasses.  相似文献   

2.
We report the results of a systematic study of the thermal and optical properties of a new family of tellurite glasses, TeO2–ZnO–BaO (TZBa), as a function of the barium oxide mole fraction and compare them with those of TeO2–ZnO–Na2O (TZN). The characteristic temperatures of this new glass family (glass transition, Tg, crystallization, Tx, and melting, Tm) increase significantly with BaO content and the glasses are more thermally stable (greater ΔT = Tx ? Tg) than TZN glasses. Relative to these, Raman gain coefficient of the TZBa glasses also increases by approximately 40% as well as the Raman shift from ~ 680 cm? 1 to ~ 770 cm? 1. The latter shift is due to the modification of the glass with the creation of non-bridging oxygen ions in the glass network. Raman spectroscopy allows us to monitor the changes in the glass network resulting from the introduction of BaO.  相似文献   

3.
《Journal of Non》2003,315(1-2):1-6
New fluoride glasses were developed in the SnF2–PbF2–ZnF2 system. Additions of 5 mol% of CsCl or 6–15 mol% of AlF3 were found to stabilize the glass formation. The IR absorption of the glasses and the optical properties of the europium ions doped in the glasses were compared with those of a fluorozirconate glass as a representative fluoride glass. The IR spectra showed that the new glasses have the peak of the phonon energy at 400 cm−1, which is about 100 cm−1 lower than that of the fluorozirconate glass. The results of the fluorescence measurement of the europium ions revealed that the multi-phonon relaxation rate in these glasses is smaller than that in the fluorozirconate glass.  相似文献   

4.
Glasses in the (Er2O3)x·(B2O3)(60 ? x)·(ZnO)40 system (0  x  15 mol%) have been prepared by the melt quenching technique. X-ray diffraction, FTIR spectroscopy, UV-VIS spectroscopy and ab initio calculations studies have been employed to study the role of Er2O3 content on the structure of the investigated glass system.X-ray diffraction and infrared spectra of the glasses reveal that the B–O–B bonds may be broken with the creation of new non-bridging oxygen ions facilitating the formation of Er–O–B linkages. The excess of oxygen can be accommodated in the network by the conversion of sp2 planar [BO3] units to the more stable sp3 [BO4] tetrahedral structural units. The linkages of the [BO4] structural units can polymerize in [B3O9]? 9 cyclic trimeric ions which will produce the ErBO3 crystalline phase. An increase of the efficiency corresponding to the 4I15/2 state to 4I11/2 state (4f–4f) transitions of Er+ 3 ions was observed for the erbium oxide richest glasses.Ab initio calculations on the structure of the matrix network show the thermodynamic instability of the [BO4], [ZnO4] and [Zn4O] structural units. Formation of three-coordination oxygens was necessary to compensate shortage of oxygens from zinc ions.  相似文献   

5.
S. Azianty  A.K. Yahya  M.K. Halimah 《Journal of Non》2012,358(12-13):1562-1568
Ternary tellurite glasses with the chemical formula 80TeO2–(2 ? x)ZnO–xFe2O3 (x = 0–15 mol%) have been prepared by the melt-quenching method. Elastic and structural properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo overlap method at 5 MHz and Fourier transform infrared (FTIR) spectroscopy, respectively. Both longitudinal and shear velocity showed a large increase of 3.40% and 4.68%, respectively, at x = 5 mol% before a smaller increase for x > 5 mol%. Interestingly, longitudinal modulus (L), shear modulus (G), bulk modulus (K) and Young's modulus (E) recorded similar trends with increase in Fe2O3. The initial large increases in shear and longitudinal velocity and related elastic moduli observed at x = 5 mol% are suggested to be due to structural modification which enhances rigidity of the glass network. FTIR analysis showed increase in bridging oxygen (BO) as indicated by the relative intensity of the TeO4 assigned peaks and increase in intensity of the FeO6 assigned peak (~ 451 cm? 1) which indicates that Fe acts as a modifier in the glass network. The increase in rigidity of the glass system is suggested to be due to the increase of BO together with the formation of strong covalent FeO bond. Quantitative analysis based on the bulk compression and ring deformation models showed that the kbc/kexp value decreased gradually from 2.41 (x = 0 mol%) to 2.02 (x = 15 mol%) which infers that the glass system became a relatively more open 3D network as Fe2O3 was increased.  相似文献   

6.
The nucleation behaviors of glass–ceramics with different Ca–mica (Ca0.5Mg3AlSi3O10F2)/fluorapatite ratios were investigated. By using differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscope with an energy dispersive spectrometer (SEM/EDS), the effect of CaO and P2O5 addition on the nucleation behaviors was studied. Results showed that the addition of CaO and P2O5 promoted nucleation process and led to the formation of different nucleation phases. After further heat treatment, Ca5(PO4)3F crystals were of needle-like morphology, instead of particle-like reported in previous studies. This can be attributed to the one-dimensional rapid growth of fluorapatite along the c-axis. The values of the Avrami parameter, n, and the dimensionality of crystal growth, m, are found to be 2 and 1, respectively, which indicated that the bulk nucleation is the dominant mechanism in crystallization, and one-dimensional growth of fluorapatite is preferred. Since needle-like fluorapatite crystals are of the same morphology to hydroxyapatites in human bones, the glass–ceramics thus prepared show excellent bioactivity in vivo.  相似文献   

7.
A macroporous nanoscale bulk bioactive glass (SiO2–CaO–P2O5 system) was prepared by sol–gel co-template method. Porosimeter analysis showed that the as-synthesized bioactive glasses (BGs) had a porosity of 85% and exhibited a multimodal pore size distribution, nanopores (10–40 nm) and macropores (100 nm–10 μm). Morphological and structural characterizations showed the pores were interconnected with pore walls of about 250 nm in width and 1 μm in length. In vitro bioactivity test indicated that the as-synthesized bulk BGs exhibited faster apatite layer formation capability than the conventional sol–gel BGs. Additionally, the deposited layer was identified as hydroxycarbonate apatite, which is similar to the inorganic part of human bone.  相似文献   

8.
Highly lithium ion conducting glasses and glass–ceramics were prepared by a mechanical milling technique in the Li2S-based sulfide and oxysulfide systems. The Li2S–P2S5 glass–ceramics showed ionic conductivity as high as 3.2 × 10?3 S cm?1 at room temperature. All-solid-state batteries using these sulfide-based materials as a solid electrolyte showed excellent charge–discharge performance with high capacity and high cycleability. The cells with the combination of the SnS–P2S5 glassy electrode and the Li2S–P2S5 glass–ceramic electrolyte worked as a secondary battery, which was a first step of glassy monolithic cells with a common glass network.  相似文献   

9.
Single crystals of β-type Ti alloy system Ti–Nb–Ta–Zr–O have been grown successfully in an Ar gas flow by a floating zone method. The growth orientations were determined approximately by using seed crystals with the desired orientations. The various growth conditions were realized by choosing the gas purity, the gas flow rate, and the growth rate as variables. Composition analysis of the grown crystals was done to check any variation from the values of the raw material along with the bulk homogeneity, followed by measurements of the lattice parameter and the hardness, which provides the following results: (1) the composition of oxygen varies with respect to the flow rate, or is increased as the purity is degraded, (2) the lattice parameter is increased with increasing composition of oxygen, (3) which is also the case with the hardness. Measurements of Young's moduli were performed to investigate the elastic properties. The results indicate that the crystals exhibit the anisotropy which was expected previously. The elastic constants were estimated from the moduli, giving the ideal stress 1.7–1.9 GPa which is on a level with the real strength. Additionally, the tensile stress–strain curve for the crystallographic direction 〈1 1 0〉 exhibited nonlinear elasticity and hysteresis.  相似文献   

10.
SiO2–PbO–Bi2O3 glasses having the composition of 35SiO2xPbO–(65 ? x)Bi2O3 (where x = 5, 20 and 45; in mol%) have been prepared using the conventional melting and annealing method. Differential scanning calorimetry (DSC) was employed to characterize the thermal behavior of the prepared glasses in order to determine their crystallization temperatures (Tcr). It has been found that Tcr decreases with the decrease of Bi2O3 content. The amorphous nature of the prepared glasses as well as the crystallinity of the produced glass–ceramics were confirmed by X-ray powder diffraction (XRD) analysis. SiPbBi2O6 glass nano-composites, comprising bismuth oxides nano-crystallites, were obtained by controlled heat-treatment of the glasses at their (Tcr) for 10 h. Transmission electron microscopy (TEM) of the glass nano-crystal composites demonstrates the presence of cubic Bi2O3 nano-crystallites in the SiPbBi2O6 glass matrix. Nano-crystallites mean size has been determined from XRD line width analysis using Scherrer's equation as well as from TEM; and the sizes obtained from both analyses are in good agreement. These sizes varied from about 15 to 170 nm depending on the chemical compositions of parent glasses and, consequently, their structure. Interestingly, replacement of the Bi2O3 by PbO in the glass compositions has pronounced effect on the nature, morphology and size of the formed nano-crystallites. Decrease of the Bi2O3 content increases the size of the nano-crystallites, and at the lowest Bi2O3 extreme, namely 20 mol%, introduces minority of the monoclinic Bi2O4 in addition to the cubic Bi2O3. The crystallization mechanism is suggested to involve a diffusion controlled growth of the bismuth oxide nano-crystallites in the SiPbBi2O6 glass matrix with the zero nucleation rate.  相似文献   

11.
Glass samples have been prepared in the NaPO3–KHSO4 binary system with the classical melting, casting and annealing steps. Electrical and dielectrical properties of glass samples were studied. Measurements of DC and AC conductivity and complex electrical permittivity of xNaPO3–(100 ? x)KHSO4 glass system were carried out at temperatures ranging from room temperature to temperature located 15 °C below glass transition temperature Tg. Results showed that changes of NaPO3 concentration considerably affect values of observed parameters. DC conductivity of glass increases as NaPO3 concentration grows until concentration x = 60. However, beyond this value a sharp decrease of DC conductivity was observed. In addition relaxation times showed abrupt changes at concentration x = 60, corresponding to the lowest relaxation times at the temperature 90 °C.  相似文献   

12.
Chalcohalide glass-ceramics based on GeS2–Ga2S3–CsCl pseudo-ternary system were prepared by heat treatment method. X-ray diffraction and scanning electron microscope studies confirmed the formations of Ga2S3 and GeS2 phase grains with sizes of 2–5 and 80 nm, respectively. Z-scan technology was employed to investigate the third-order nonlinear optical characteristics of both precursor glass and its glass ceramics at 800 nm. The results show that nonlinear refractive index n2 as well as nonlinear absorption coefficient β increase after heat treatment, which is due to quantum effects, and the largest n2 of the glass ceramics is 4.3 × 10? 11 esu which is 4 times larger than that of the host.  相似文献   

13.
《Journal of Non》1999,243(2-3):192-203
Glasses with composition (100  x) TeO2x LiNbO3 (10⩽x⩽50) were prepared by conventional melt-quenching. The glass-formation ability, dielectric and optical properties of these glasses were studied. LiNbO3 microcrystallites were directly precipitated on the surface of the glass, with the composition 50 TeO2 – 50 LiNbO3, by a single step heat treatment. The polar nature and second-order optical non-linearity of the transparent surface crystallized glasses are manifested in their strong pyroelectric response, ferroelectric hysteresis and intense second harmonic generation of 1064 nm wavelength radiation.  相似文献   

14.
The effect of lead oxide (PbO) on optical properties of Dy3+-doped PbO–H3BO3–TiO2–AlF3 (LBTAFDy) glasses is investigated. The LBTAFDy glasses were prepared with different PbO contents ranging from 30 to 60 mol%. The Judd–Ofelt intensity parameters (Ωλ = 2, 4, 6) are obtained by the least square fit analysis. It is found that the Ω2 parameter and yellow-to-blue intensity ratio (Y/B) of the Dy3+ emission depend on the PbO content in LBTAFDy glass. The structural asymmetry around the Dy3+ ion and the DyO covalency are responsible for the changes in Ω2 parameter and Y/B ratio. The variation of decay time of 4F9/2 emission level with the PbO content also supports the changes in structural asymmetry and DyO covalency in LBTAFDy glass.  相似文献   

15.
Glass–ceramics with the composition 2Fe2O3.1ZnO.1MgO.96SiO2 [4ZnMgFe] and 2Fe2O3.2ZnO.3MgO.93SiO2 [7ZnMgFe] (mol%) were prepared using the sol–gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), electron diffraction (ED) and Mössbauer spectroscopy (MS) were used to investigate the glass–ceramics structure. The samples contain ferrite nanoparticles embedded in a glass matrix. However, zinc ferrite nanoparticles seems to be the preferential crystalline phase formed. The amount of ferrite particles depends on treatment temperature and sample composition. The Mössbauer spectroscopy measurements show that ferrite nanoparticles can exhibit a ferrimagnetic behaviour combined with superparamagnetism.  相似文献   

16.
Glass ceramic materials with composition 75TeO2–xBi2O3–(25-x)ZnO (x = 13, 12, 11) possessing transparency in the near- and mid-infrared (MIR) regions were studied in this paper. It was found that as the Bi2O3 content increased in the glass composition, the observed crystallization tendency is enhanced, and high crystal concentrations were obtained for the glasses with high Bi2O3 content while maintaining transparency in the MIR region. Crystal size in the glass ceramic was reduced by adjusting the heat treatment conditions; the smallest average size obtained in this study is 700 nm. Bi0.864Te0.136O1.568 was identified using X-ray Diffraction (XRD) and found to be the only crystal phase developed in the glass ceramics when the treatment temperature was fixed at 335 °C. The morphology of the crystals was studied using Scanning Electron Microscopy (SEM), and crystals were found to be polyhedral structures with uniform sizes and a narrow size distribution for a fixed heat treatment regime. Infrared absorption spectra of the resulting glass ceramics were studied. The glass ceramic retained transparency in the infrared region when the crystals inside were smaller than 1 μm, with an absorption coefficient less than 0.5/cm in the infrared region from 1.25 to 2.5 μm. The mechanical properties were also improved after crystallization; the Vickers Hardness value of the glass ceramic increased by 10% relative to the base glass.  相似文献   

17.
Porous phosphate-based glass ceramics prepared by the sol–gel method were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential thermal analysis (DSC). The 48CaO–45P2O5–2ZnO–5Na2O glassy system can remain fully amorphous up to 550 °C. After heat treated at 650 °C, the obtained porous bodies consisted of dense struts and macropores where β-Ca2P2O7 and Na2CaP2O7 phases crystallized from the glass matrix. When treated at 750 °C, Ca4P6O19 and NaZn(PO3)3 precipitated homogeneously as new phases among the residual glass matrix. The material was assessed by soaking samples in phosphate-based buffer solution (PBS) solution to determine the solubility and observe apatite formation.  相似文献   

18.
19.
Hong Li  Jinshu Cheng  Liying Tang 《Journal of Non》2008,354(12-13):1418-1423
Extensive corrosion experiments on electrocast alumina–zirconia–silica (AZS) refractories by molten CaO–Al2O3–SiO2 (CAS) and Na2O–CaO–SiO2 (NCS) glasses were carried out at various temperatures under static condition. The features and mechanism of the corrosion were compared and analyzed. The changes of microstructure and phase composition of refractories in the course of the melt corrosion were also studied. X-ray diffraction (XRD), scanning electron microscope (SEM) and chemical analysis were used to characterize the corroded refractory materials and reacted melts. The reasons of alumina–zirconia–silica bricks corroded are the meltdown of their own composition, penetration or permeation of alkali oxide in the glass melt and scouring of the glass melt. The results show that the refractories resistance against corrosion of the oxides like Na2O, K2O or CaO is weak, and that the corrosion mechanism of NCS/AZS is different from that of CAS/AZS. In a static condition, CaO–Al2O3–SiO2 melts corroded alumina–zirconia–silica brick more severely than Na2O–CaO–SiO2. The result provides useful reference to a prospective selection of refractory materials in glass and glass–ceramics manufacture.  相似文献   

20.
Tellurite glasses from TeO2–Bi2O3–BaO pseudo-ternary system were prepared using a conventional melt-quenching method and its glass-forming region was determined. A series of glasses were selected and their third-order optical nonlinearities (TONL) were measured by employing the Z-scan method at a wavelength of 800 nm with femtosecond laser pulses. The results showed that glass former Te4+ ions exhibited positive influences on the TONL and glass modifiers Ba2+ ions behaved similarly; low concentrated Bi3+ ions as glass modifiers weakened the nonlinearities, but an excess amount of Bi3+ behaved oppositely. FTIR measurements demonstrated that chemical bonds especially Te–Oeq vibrated at a high energy level remarkably promoted the TONL susceptibility χ(3), and the glass sample with the highest Bi2O3 content exhibited the largest χ(3) value which was due to the presence of BiO3 polyhedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号