首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and structures of mononuclear Ni(II), Co(II), Mn(II), and Cu(II) pivalates isolated as complex salts NBu4[M(Piv)3] ((NBu4)+ is tetrabutylammonium cation, Piv is pivalate anion) and polynuclear complexes [Ni6(L)2(HL)2(Piv)6(HPiv)8], (NBu4)2[Co4(Piv)8(AcO)2(H2O)4], NBu4[Co2(Piv)5(H2O)2], and (NBu4)2[Cu4(Piv)8(AcO)2(H2O)2] (L2–, HL, and AcO is lactic acid dianion, lactic acid monoanion, and acetate anion, respectively) are discussed. The formation of the compounds is detected during the development of the synthesis of NBu4[M(Piv)3].  相似文献   

2.
Summary New coordination compounds of NiII and CoII with dichloropyrimidinoguanidine (L) have been obtained and characterized by physico-chemical and spectroscopic methods. The complexes have the general formulae: [ML3](ClO4)2, [ML2(SO4)], [ML2(NCS)2], (M = Ni or Co), [NiL2(ClO4)2] and [CoL2](ClO4)2. The ligands are bonded to the metal ion via one nitrogen atom from the pyrimidine heterocyclic ring and one from the guanidine group.  相似文献   

3.
The title compound, (C5H6Br2N3)2[CuBr4], contains isolated substituted pyridinium cations and [CuBr4]2? anions. The di­amino­di­bromo­pyridinium ions are planar, while the CuII ions have a distorted compressed tetrahedral coordination with C2 symmetry. The two independent trans‐Br—Cu—Br angles are 128.9 (1) and 136.0 (1)°, with Cu—Br distances of 2.3939 (15) and 2.3790 (16) Å.  相似文献   

4.
DFT calculations (M06, PBE0/Def2-TZVP) of coordination compounds used in reactions of selective oxidation of thiols to disulfides were performed. Primary active centers of the catalysts are polynuclear scaffolds {L2M(μ-OH)2ML2}2+ and {L2M(μ-OH)2M′(μ-OH)2ML2}2+ (M = CuI, CuII, PdII; M' = CuII; L = NH3). CuII ions in combination with PdII ions are capable of formation of polynuclear active center {PdII(μ-OH)2CuII(μ-OH)2PdII}2+ bringing together a large number of mutually oriented RS groups and thus affecting the rate of formation of disulfide R2S2.  相似文献   

5.
In the title dimeric compound, (C3H7N2S)2[Cu2(CHO2)6], each CuII atom has a square‐pyramidal coordination, with the nonbridging formate ion at the apical position. The complex anion is located on a crystallographic inversion centre, with a Cu...Cu separation of 2.6566 (4) Å. 2‐Amino‐2‐thiazolinium cations connect complex anions via hydrogen bonds to form a ribbon running along the a axis.  相似文献   

6.
The title compund, [Cu2(OH)2(C22H25N3)2](ClO4)2, is a copper(II) dimer, with two [CuL]2+ units [L is bis(6‐methyl‐2‐pyridylmethyl)(2‐phenylethyl)amine] bridged by hydroxide groups to define the {[CuL](μ‐OH)2[CuL]}2+ cation. Charge balance is provided by perchlorate counter‐anions. The cation has a crystallographic inversion centre halfway between the CuII ions, which are separated by 3.0161 (8) Å. The central core of the cation is an almost regular Cu2O2 parallelogram of sides 1.931 (2) and 1.935 (2) Å, with a Cu—O—Cu angle of 102.55 (11)°. The coordination geometry around each CuII centre can be best described as a square‐based pyramid, with three N atoms from L ligands and two hydroxide O atoms completing the coordination environment. Each cationic unit is hydrogen bonded to two perchlorate anions by means of hydroxide–perchlorate O—H...O interactions.  相似文献   

7.
Summary The ligand, potassium bicyclo[2.2.1]-hept-5-en-endo-2-oyl-hydroxylamine-3-carboxylate-monohydrate, KHL·H2O2 and its M(HL)2 complexes, [{Fe(HL)2}2SO4], K[FeL2] and K2[ML2] (M=MnII, FeII, CoII, NiII, CuII and ZnII) were prepared and characterized. For all, except the sulphate complex of iron(III), a monomeric octahedral configuration was postulated and this is realized through the coordination of oxygen atoms of the carboxylic, carbonyl and oxime group of two mono-or di-anion ligands. The dianionic form of the ligand is the result of deprotonation of the carboxylic group and mide-alcohol form of the hydroxamic group. For the sulphate-containing iron(III) complex a dimeric coordination is proposed with two monoanions of the organic ligand (the carbonyl oxygens are not coordinated) and the bridging SO4 group. The relative degree of covalency of the metal-carboxylic oxygen bond is 10.6–45.2% and increases in the order: MnIIIIIIIIIIIII. The complexes have been characterized by elemental and t.g. analysis and i.r. spectra.  相似文献   

8.
The concept of virtual potential (employed here in modelling operations), a unique experimental setup designed and built in our laboratories, and new regression equations derived for nonlinear fitting of quasi‐reversible direct‐current polarograms were combined with the existing rigorous treatment and refinement of polarographic data to establish reliable metal/ligand models and accurate stability constants for the lead(II)/glycine/OH? and lead(II)/sarcosine/OH? systems (sarcosine = N‐methylglycine). In the case of glycine, the complexes [M(HL)], [ML], [ML2], and [ML3] were identified, and their stability constants (as log β) were established to be 10.51 ± 0.06, 4.58 ± 0.02, 7.19 ± 0.10, and 9.27 ± 0.02, respectively, the complex [ML3] being reported here for the first time (Table 2). The system with sarcosine involving [M(HL)], [ML], [ML2], [ML3], and [ML2(OH)2], with the stability constants (as log β) 11.01 ± 0.04, 4.18 ± 0.03, 7.23 ± 0.03, 9.1 ± 0.3, and 15.97 ± 0.07, respectively, is reported for the first time (Table 3). The log K1 value for PbII with sarcosine is a fraction of a log unit smaller when compared with the PbII complex with glycine, in agreement with the literature data for CuII, NiII, and ZnII showing the same trend for these two ligands. The proposed nonlinear curve‐fitting operations expand the applicability of polarography to study reliably and conveniently quasi‐reversible, on the polarographic time scale, metal/ligand systems (systems with involved heterogeneous kinetics).  相似文献   

9.
The complex salt (NBu4n)2 [Cu(bcd)2] and heterobimetallic coordination polymers MM′(bcd)2 [M=2AgI, CdII, HgII or PbII; M′=NiII or CuII; bcd2−=1-benzoyl-1-cyanoethylene-2,2-dithiolate] have been synthesized from the reaction of Na2[M′(bcd)2] generated in situ with NBu4nBr or metal salts MX2 [X=MeCO2, NO3, Cl or SO42−]. The complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility, i.r., n.m.r., electronic and e.s.r. spectra and solid-state conductivity measurements. The MCu(bcd)2 polymers are diamagnetic, suggesting strongly antiferromagnetically coupled CuII ions. The conductivities of the pressed pellets of the compounds are very small and they do not show semiconducting behaviour in the considered temperature range.*Presented at the 10th Symposium on Modern Trends in Inorganic Chemistry (MTIC-X), December 15–17, 2003, Indian Institute of Technology, Mumbai, India.  相似文献   

10.
The title compound, trans-bis(3-amino-2-phenyl-4H-1-benzopyran-4-one-κ2N,O4)bis(perchlorato-κO)copper(II), [Cu(ClO4)2(C15H11NO2)2], is composed of mononuclear units wherein the central CuII cation occupies a crystallographic inversion centre. The cation is coordinated by two bidentate 3-aminoflavone ligands occupying the equatorial sites and by two perchlorate anions in the apical positions, thereby giving rise to a markedly elongated octahedral coordination geometry. Two symmetry-related intermolecular N—H...O hydrogen bonds link the molecules into chains of rings running parallel to the [100] direction, while intramolecular N—H...O hydrogen bonds help to determine the orientation of the apical perchlorate anions.  相似文献   

11.
Complexing processes in MII-N-diisopropoxythiophosphorylthiobenzamide binary systems (M = Co, Ni, Cu) in metal(II) hexacyanoferrate(II) gelatin-immobilized matrices upon contact with aqueous–alkaline (pH = 12.0 ± 0.1) solutions of organic compounds have been studied. It has been shown that, in CoII and CuII, the initial act of complexing involves destruction of the CoII and CuII hexacyanoferrates(II) by OH ions, leading to formation of the corresponding hydroxides which react with the ligand indicated. In the both systems, successive addition of two ligand molecules per M(OH)2 fragment occurs and [MB(OH)(OH2)] and [MB2] coordination compounds are formed (B-a singly deprotonated ligand form). In the NiII-N-diisopropoxythiophosphorylthiobenzamide system, the formation of three complexes, (Ni2BOH)2[Fe(CN)6], [NiB(OH)(OH2)] and [NiB2] occurs.  相似文献   

12.
Summary Metal(II) complexes of 2-acetylthiophene-2-furoylhydrazone (HL) of the types [VO(HL)SO4], [Cu(HL)2Cl2(H2O)], [M(HL)2Cl2] [M=CoII, NiII, or ZnII] and [ML2(H2O)2] [M=CoII, NiII, CuII or ZnII] have been prepared and characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility, visible, e.s.r. and i.r. spectral studies. The bonding and stereochemistry of the complexes are discussed.  相似文献   

13.
Azidocuprates(II). Crystal Structure of (PPh4)2[Cu2(N3)6] (PPh4)2[Cu(N3)4] and (PPh4)2[Cu2(N3)6], which is already known, are prepared from the corresponding chloro cuprates and excess silver azide in dichloro methane suspension. The azido cuprates form nonexplosive brown crystals of low sensitivity to moisture and are characterized by i.r. spectroscopy. (PPh4)2[Cu2(N3)6] was submitted to a X-ray crystallographic structural analysis (4284 observed, independent reflexions, R = 0.034). The compound crystallizes triclinic in the space group P1 with one formula unit per unit cell. The lattice parameters are a = 1047.4 pm; b = 1131.1 pm; c = 1179.4 pm; α = 101.26°; β = 109.31°; γ = 103.42°. The compound consists of PPh4 cations and centrosymmetric anions [Cu2(N3)6]2?, which meet D2h-symmetry fairly well. In the anions the copper atoms are linked to a planar Cu2N2 four-membered ring by the N α atoms of two azide groups. The other azido ligands are bonded terminally and complete coordination number 4 at the Cu atoms which show planar geometry.  相似文献   

14.
A new 1,3,4‐oxadiazole‐containing bispyridyl ligand, namely 5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione (L), has been used to create the novel complexes tetranitratobis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}zinc(II), [Zn2(NO3)4(C14H12N4OS)2], (I), and catena‐poly[[[dinitratocopper(II)]‐bis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}] nitrate acetonitrile sesquisolvate dichloromethane sesquisolvate], {[Cu(NO3)(C14H12N4OS)2]NO3·1.5CH3CN·1.5CH2Cl2}n, (II). Compound (I) presents a distorted rectangular centrosymmetric Zn2L2 ring (dimensions 9.56 × 7.06 Å), where each ZnII centre lies in a {ZnN2O4} coordination environment. These binuclear zinc metallocycles are linked into a two‐dimensional network through nonclassical C—H...O hydrogen bonds. The resulting sheets lie parallel to the ac plane. Compound (II), which crystallizes as a nonmerohedral twin, is a coordination polymer with double chains of CuII centres linked by bridging L ligands, propagating parallel to the crystallographic a axis. The CuII centres adopt a distorted square‐pyramidal CuN4O coordination environment with apical O atoms. The chains in (II) are interlinked via two kinds of π–π stacking interactions along [01]. In addition, the structure of (II) contains channels parallel to the crystallographic a direction. The guest components in these channels consist of dichloromethane and acetonitrile solvent molecules and uncoordinated nitrate anions.  相似文献   

15.
The title compound, {[Cu(NH3)4][Cu(CN)3]2}n, features a CuI–CuII mixed‐valence CuCN framework based on {[Cu2(CN)3]}n anionic layers and [Cu(NH3)4]2+ cations. The asymmetric unit contains two different CuI ions and one CuII ion which lies on a centre of inversion. Each CuI ion is coordinated to three cyanide ligands with a distorted trigonal–planar geometry, while the CuII ion is ligated by four ammine ligands, with a distorted square‐planar coordination geometry. The interlinkage between CuI ions and cyanide bridges produces a honeycomb‐like {[Cu2(CN)3]}n anionic layer containing 18‐membered planar [Cu(CN)]6 metallocycles. A [Cu(NH3)4]2+ cation fills each metallocyclic cavity within pairs of exactly superimposed {[Cu2(CN)3]}n anionic layers, but there are no cations between the layers of adjacent pairs, which are offset. Pairs of N—H...N hydrogen‐bonding interactions link the N—H groups of the ammine ligands to the N atoms of cyanide ligands.  相似文献   

16.
A new class of 16- and 17-membered tetraamide macrocyclic complexes, [ML1X2] and [ML2X2] [M = MnII, CoII, NiII, CuII or ZnII; X = NO3 or Cl], have been prepared by the template reaction of anthranilic acid, 1,2-diaminoethane or 1,3-diaminopropane and succinic acid in 2:1:1 molar ratio. The stoichiometries and coordination modes of the complexes have been deduced from physicochemical and spectroscopic measurements. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
In the title compound, [Cu(C15H22NO)2], the CuII cation lies on a centre of symmetry. The coordination geometry about the CuII ion is a parallelogram, formed by the N2O2 donor set of the two bidentate long alkane chain Schiff base imine–phenol ligands. The Cu—N and Cu—O distances are 2.009 (3) and 1.888 (3) Å, respectively.  相似文献   

18.
Summary Several new coordination compounds are reported withN-carbamoylpyrazole (Hcpz) as the ligand;viz. M(cpz)2 where M = CuII and NiII; M(Hcpz)Cl2 where M = MnII, CoII, CuII, ZnII and CdII; M(Hcpz)2Cl2 Where M = FeII, CoII and NiII: M(Hcpz)3(BF4)2 where M = FeII, CoII, NiII, ZnII and CdII; and Cu(Hcpz)2(BF4)2. In the salts, Hcpz is coordinated through the nitrogen atoms of the pyrazole ring and the nitrogen atom of the carbamoyl group. In the Hcpz complexes, coordination takes place through the nitrogen atom of the pyrazole ring and the oxygen atom of the carbamoyl group.  相似文献   

19.
Summary New complexes of the general formulae [MLA(H2O)2]-Cl2 (M=Ni or Cu), [MLAX2] (M=Co or Cu; X=Cl or Br), [NiLABr2]·H2O, [MLA] [MCl4] (M=Pd or Pt), [NiLB(H2O)2]Cl2·2H2O, [MLBCl2] (M=Co, Ni, Cu, Pd or Pt; X=Cl or Br) and [MLB] [MCl4] (M=Pd or Pt), where LA=N,N-ethylenebis(2-acetylpyridine imine) and LB=N, N-ethylenebis(2-benzoylpyridine imine), have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, t.g./d.t.g. methods, magnetic susceptibilities and spectroscopic (i.r., far-i.r., ligand field,1Hn.m.r.) studies. Monomeric pseudo-octahedral stereochemistries for the CoII, NiII and CuII complexes andcis square planar structures for the compounds [MLBX2] (M=Pd or Pt; X=Cl or Br) are assigned in the solid state. The molecules LA and LB behave as tetradentate chelate ligands in the CoII, NiII, CuII and Magnus-type PdII and PtII complexes, bonding through both the pyridine and methine nitrogen atoms. A bidentateN-methine coordination of the Schiff base LB is assigned in the [MLBX2] complexes (M=Pd or Pt; X=Cl or Br). The anomalous magnetic moment values of the CoII complexes are discussed.  相似文献   

20.
The crystal structure of the title compound, [Cu(ClO4)2(C4H12N2)2], (I), is reported at 100, 250 and 400 K. The CuII cation in this complex is coordinated in a distorted octahedral mode characteristic of Jahn–Teller systems. The coordination of the perchlorate ligands via longer, and presumably weaker, axial Cu—O distances varies significantly as a function of temperature. One of the Cu—O distances increases between 100 and 250 K, and one of the Cu—O—Cl angles expands between 250 and 400 K. At all temperatures, the complex forms a two‐dimensional N—H...O hydrogen‐bond network in the (001) plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号