首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
LQG量测反馈最优控制的精细积分   总被引:1,自引:0,他引:1  
对于线性二次型高斯(LQG)量测反馈最优控制问题,提出了精细积分解法。根据分离性原理,LQG控制问题可以分成为最优状态反馈控制问题以及最优状态估计问题,即:离线计算的两套黎卡提微分方程的求解以及状态向量的时变微分方程的在线积分解。该算法不仅适用于求解二点边值问题及其相应的黎卡提微分方程,也适用于求解状态估计的时变微分方程。精细积分高精度的特点,对控制和估计都是有利的。数值算例表明了算法的高精度及有效性。  相似文献   

2.
In this paper, the geometrical design for the blade's surface in an impeller or for the profile of an aircraft, is modeled from the mathematical point of view by a boundary shape control problem for the Navier-Stokes equations. The objective function is the sum of a global dissipative function and the power of the fluid. The control variables are the geometry of the boundary and the state equations are the Navier-Stokes equations. The Euler-Lagrange equations of the optimal control problem are derived, which are an elliptic boundary value system of fourth order, coupled with the Navier-Stokes equations. The authors also prove the existence of the solution of the optimal control problem, the existence of the solution of the Navier-Stokes equations with mixed boundary conditions, the weak continuity of the solution of the Navier-Stokes equations with respect to the geometry shape of the blade's surface and the existence of solutions of the equations for the Gateaux derivative of the solution of the Navier-Stokes equations with respect to the geometry of the boundary.  相似文献   

3.
In this paper we formulate and solve an important problem inapplied optimal control. A train is to be driven along a trackwith non-zero gradient, where speed limits are imposed. Thejourney is to be completed within a specified time using aslittle fuel as possible. We find key equations that determinestrategies of optimal type and present a general solution algorithm.Several specific examples will be given to illustrate the solutionprocedure.  相似文献   

4.
In this paper, we study an inverse optimal problem in discrete-time stochastic control. We give necessary and sufficient conditions for a solution to a system of stochastic difference equations to be the solution of a certain optimal control problem. Our results extend to the stochastic case the work of Dechert. In particular, we present a stochastic version of an important principle in welfare economics.  相似文献   

5.
The fuzzy relation programming problem is a minimization problem with a linear objective function subject to fuzzy relation equations using certain algebraic compositions. Previously, Guu and Wu considered a fuzzy relation programming problem with max-product composition and provided a necessary condition for an optimal solution in terms of the maximum solution derived from the fuzzy relation equations. To be more precise, for an optimal solution, each of its components is either 0 or the corresponding component's value of the maximum solution. In this paper, we extend this useful property for fuzzy relation programming problem with max-strict-t-norm composition and present it as a supplemental note of our previous work.  相似文献   

6.
In this paper we present some semismooth Newton methods for solving the semi-infinite programming problem. We first reformulate the equations and nonlinear complementarity conditions derived from the problem into a system of semismooth equations by using NCP functions. Under some conditions a solution of the system of semismooth equations is a solution of the problem. Then some semismooth Newton methods are proposed for solving this system of semismooth equations. These methods are globally and superlinearly convergent. Numerical results are also given.  相似文献   

7.
8.
The problem of increasing the accuracy of an approximate solution is considered for boundary value problems for parabolic equations. For ordinary differential equations (ODEs), nonstandard finite difference schemes are in common use for this problem. They are based on a modification of standard discretizations of time derivatives and, in some cases, allow to obtain the exact solution of problems. For multidimensional problems, we can consider the problem of increasing the accuracy only for the most important components of the approximate solution. In the present work, new unconditionally stable schemes for parabolic problems are constructed, which are exact for the fundamental mode. Such two‐level schemes are designed via a modification of standard schemes with weights using Padé approximations. Numerical results obtained for a model problem demonstrate advantages of the proposed fundamental mode exact schemes.  相似文献   

9.
This paper presents a computational technique based on the pseudo‐spectral method for the solution of distributed optimal control problem for the viscous Burgers equation. By using pseudo‐spectral method, the problem is converted to a classical optimal control problem governed by a system of ordinary differential equations, which can be solved by well‐developed direct or indirect methods. For solving the resulting optimal control problem, we present an indirect method by deriving and numerically solving the first‐order optimality conditions. Numerical tests involving both unconstrained and constrained control problems are considered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, the identification of an unknown time-dependent source term in an inverse problem of parabolic type with nonlocal boundary conditions is considered. The main approach is to change the inverse problem to a system of Volterra integral equations. The resulting integral equations are convolution-type, which by using Sinc-collocation method, are replaced by a system of linear algebraic equations. The convergence analysis is included, and it is shown that the error in the approximate solution is bounded in the infinity norm by the norm of the inverse of the coefficient matrix multiplied by a factor that decays exponentially with the size of the system. To show the efficiency of the present method, an example is presented. The method is easy to implement and yields very accurate results.  相似文献   

11.
This paper is concerned with an optimal boundary control of the cooling down process of glass, an important step in glass manufacturing. Since the computation of the complete radiative heat transfer equations is too complex for optimization purposes, we use simplified approximations of spherical harmonics including a practically relevant frequency bands model. The optimal control problem is considered as a constrained optimization problem. A first-order optimality system is derived and decoupled with the help of a gradient method based on the solution to the adjoint equations. The arising partial differential–algebraic equations of mixed parabolic–elliptic type are numerically solved by a self-adaptive method of lines approach of Rothe type. Adaptive finite elements in space and one-step methods of Rosenbrock-type with variable step sizes in time are applied. We present numerical results for a two-dimensional glass cooling problem.  相似文献   

12.
Shifted Legendre polynomial functions are employed to solve the linear-quadratic optimal control problem for lumped parameter system. Using the characteristics of the shifted Legendre polynomials, the system equations and the adjoint equations of the optimal control problem are reduced to functional ordinary differential equations. The solution of the functional differential equations are obtained in a series of the shifted Legendre functions. The operational matrix for the integration of the shifted Legendre polynomial functions is also introduced in the simulation step in order to simplify the computational procedure. An illustrative example of an optimal control problem is given, and the computational results are compared with those of the exact solution. The proposed method is effective and accurate.  相似文献   

13.
We study Dirichlet boundary optimal control problems for 2D Boussinesq equations. The existence of the solution of the optimization problem is proved and an optimality system of partial differential equations is derived from which optimal controls and states may be determined. Then, we present some computational methods to get the solution of the optimality system. The iterative algorithms are given explicitly. We also prove the convergence of the gradient algorithm.  相似文献   

14.
The long-time behavior of solutions for an optimal distributed control problem associated with the Boussinesq equations is studied. First, a quasi-optimal solution for the Boussinesq equations is constructed; this quasi-optimal solution possesses the decay (in time) properties. Then, some preliminary estimates for the long-time behavior of all solutions of the Boussinesq equations are derived. Next, the existence of a solution for the optimal control problem is proved. Finally, the long-time decay properties for the optimal solutions is established.  相似文献   

15.
The purpose of this paper is to propose a computational method for the approximate solution of linear and nonlinear two-point boundary value problems. In order to approximate the solution, the expansions in terms of the Bernstein polynomial basis have been used. The properties of the Bernstein polynomial basis and the corresponding operational matrices of integration and product are utilized to reduce the given boundary value problem to a system of algebraic equations for the unknown expansion coefficients of the solution. On this approach, the problem can be solved as a system of algebraic equations. By considering a special case of the problem, an error analysis is given for the approximate solution obtained by the present method. At last, five examples are examined in order to illustrate the efficiency of the proposed method.  相似文献   

16.
应用凸锥上的不动点定理,讨论了一类分数阶微分方程m点边值问题正解的存在性,得到了这类边值问题至少存在一个正解的充分条件,并给出了一个实例.  相似文献   

17.
We study the dynamics of a piecewise (in time) distributed optimal control problem for Generalized MHD equations which model velocity tracking coupled to magnetic field over time. The long-time behavior of solutions for an optimal distributed control problem associated with the Generalized MHD equations is studied. First, a quasi-optimal solution for the Generalized MHD equations is constructed; this quasi-optimal solution possesses the decay (in time) properties. Then, some preliminary estimates for the long-time behavior of all solutions of Generalized MHD equations are derived. Next, the existence of a solution of optimal control problemis proved also optimality system is derived. Finally, the long-time decay properties for the optimal solutions is established.  相似文献   

18.
In this paper, we present a technique for solving an optimizationproblem of Lagrange type where the system equations are stiffand the system can be expressed explicitly in terms of a singular-perturbationparameter. Such problems arise in control theory and in otherapplication areas. The proposed procedure consists of solvingthe singularly perturbed two-point boundary-value problem comprisedby the coupled state and adjoint equations arising from thefirst-order necessary conditions for optimality. It is assumedthat the coupled system has no turning points, and the solutionis accomplished by making an analytic stretching in the boundarylayers to give three explicit boundary-value problems whichare treated separately. The novel feature of the procedure isthat the explicit boundary conditions for each problem are obtained,at the selected cut points, from the solution to the reducedproblem. The application of the procedure is described for twoexamples.  相似文献   

19.
In this paper, a new approach to the linear exact model matching problem for a class of nonlinear systems, using static state feedback, is presented. This approach reduces the problem of determining the state feedback control law to that of solving a system of first-order partial differential equations. Based on these equations, two major issues are resolved: the necessary and sufficient conditions for the problem to have a solution and the general analytical expression for the feedback control law. Furthermore, the proposed approach is extended to solve the same problem via static output feedback.  相似文献   

20.
In this paper, we propose a method for the numerical solution of singularly perturbed two-point boundary-value problems (BVPs). First, we develop two schemes to integrate initial–value problem (IVP) for system of two first-order differential equations, and then by using these schemes we solve the BVP. Precisely, we convert the second-order BVP into a system of first-order differential equations, and then apply the numerical schemes to obtain the solution. In order to get an initial condition for the system, we use the asymptotic approximate solution. Error estimates are derived and numerical examples are provided to illustrate the present method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号