首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Non》2005,351(40-42):3235-3245
The electrical and dielectrical properties of Bi2O3–Fe2O3–P2O5 glasses were measured by impedance spectroscopy in the frequency range from 0.01 Hz to 4 MHz and over the temperature range from 303 to 473 K. It was shown that the dc conductivity strongly depends on the Fe2O3 content and Fe(II)/Fetot ratio. With increasing Fe(II) ion content from 17% to 34% in the bismuth-free 39.4Fe2O3–59.6P2O5 and 9.8Bi2O3–31.7Fe2O3–58.5P2O5 glasses, the dc conductivity increases. On the other hand, the decrease in dc conductivity for the glasses with 18.9 mol% Bi2O3 is attributed to the decrease in Fe2O3 content from 31.7 to 23.5 mol%, which indicates that the conductivity for these glasses depends on Fe2O3 content. The conductivity for these glasses is independent of the Bi2O3 content and arises mainly from polaron hopping between Fe(II) and Fe(III) ions suggesting an electronic conduction. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency the dispersion was investigated in terms of dielectric loss. The thermal activated relaxation mechanism dominates the observed relaxation behavior. The relationship between relaxation parameters and electrical conductivity indicates the electronic conductivity controlled by polaron hopping between iron ions. The Raman spectra show that the addition of up to 18.9 mol% of Bi2O3 does not produce any changes in the glass structure which consists predominantly of pyrophosphate units.  相似文献   

2.
《Journal of Non》2007,353(47-51):4395-4399
The electrical properties of (40−x)ZnO–xFe2O3–60P2O5 (x = 10, 20, 30 mol%) glasses were measured by impedance spectroscopy in the frequency from 0.01 Hz to 4 MHz and the temperature range from 303 to 473 K. It was shown that the dc conductivity strongly depends on the Fe2O3 content and Fe(II)/Fetot ratio. The increase in dc conductivity for these glasses is attributed to the increase in Fe2O3 content from 10 to 30 mol%. With increasing Fe(II) ion content from 6% to 17% the dc conductivity increases. This indicated that the conductivity arises mainly from polaron hopping between Fe(II) and Fe(III) ions suggesting an electron conduction in these glasses. By applying scaling on conductivity data measured at different temperatures, single master curve was obtained for each glass. On the other hand, deviation from the master curve at high frequencies was observed for glasses with different compositions. This deviation originates from a various mobility of charge carriers in different glass structures. Raman spectra showed the change of structure, from metaphosphate to pyrophosphate, with increasing Fe2O3 content from 10 to 30 mol%.  相似文献   

3.
The electrical conductivity and dielectric properties of xB2O3–(40 ? x)Fe2O3–60P2O5 (x = 6–20, mol%) glasses were investigated in the frequency range from 0.01 Hz to 1 MHz and the temperature range from 303 K to 523 K. At temperatures below 523 K an ac conductivity and the dielectric constant follow the universal dielectric response (UDR), being typical for hopping or tunneling of localized charge carriers. A detailed analysis of the temperature dependence of the UDR parameter s in terms of the theoretical model for tunneling of small polarons revealed that below 523 K this mechanism governs the charge transport in these glasses. The comparison of the values of characteristic coefficients W and α determined by two different methods confirms the polaronic behavior of boron doped iron phosphate glasses.  相似文献   

4.
《Journal of Non》2007,353(11-12):1070-1077
The structural properties of xCr2O3–(40  x)Fe2O3–60P2O5, 0  x  10 (mol%) glasses have been investigated by Raman and Mössbauer spectroscopies, X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The Raman spectra show that the addition of up to 5.3 mol% Cr2O3 does not produce any changes in the glass structure, which consists predominantly of pyrophosphate, Q1, units. This is in accordance with O/P  3.5 for these glasses. The increase in glass density and Tg that occurs with increasing Cr2O3 suggests the strengthening of glass network. The Mössbauer spectra indicate that the Fe2+/Fetot ratio increases from 0.13 to 0.28 with increasing Cr2O3 content up to 5.3 mol%, which can be related to an increase in the melting temperature from 1423 to 1473 K. After annealing, the 10Cr2O3–30Fe2O3–60P2O5 (mol%) sample was partially crystallized and contained crystalline β-CrPO4 and Fe3(P2O7)2. The SEM and AFM micrographs of the partially crystallized sample revealed randomly distributed crystals embedded in a homogeneous glass matrix. EDS analysis indicated that the glass matrix was rich in Fe2O3 (39.6 mol%) and P2O5 (54.9 mol%), but contained only 5.5 mol% of Cr2O3. These results suggest that the maximum solubility of chromium in these iron phosphate melts is 5.5 mol% Cr2O3.  相似文献   

5.
In earlier studies on phosphate and tellurite glasses containing vanadium and iron oxides, non-linear variation of physical properties as functions of the ratios of the transition ions (V/V + Fe) were observed. The most striking effect was observed with electrical conductivity, where a 3 orders of magnitude reduction in conductivity was observed at a V/V + Fe ratio of ~ 0.4. The effect was termed Mixed Transition-ion Effect or MTE. In phosphate glasses, however, MTE was not observed when one of the transition ions was manganese. It was concluded that Mn does not contribute to conduction in these glasses. In the present study, we demonstrate a mixed transition ion effect in tellurite glasses containing MnO and Fe2O3 (xFe2O3(0.2 ? x) MnO0.8TeO2 with x varying from 0 to 0.2). A maximum in the property at an intermediate composition (x = 8.5 mol%), was observed in DC resistivity, activation energy, molar volume etc. Mossbauer and optical absorption (UV–VIS–NIR) measurements were performed on these glasses and the transport mechanism has been identified to be hopping of small polarons between Fe3 + (Mn3 +) and Fe2 + (Mn2 +) sites.  相似文献   

6.
Transparent glasses of composition 10BaO.20Bi2O3.(70 ? x)B2O3.xFe2O3 (wt.%) where 0  x  2.0, were characterized by XRD and SEM. Physical, spectroscopic and dielectric properties were investigated. At higher dopant of Fe2O3, EPR results revealed that, the number of Fe3+ ions participate in the resonance is decreased by forming a new signal at g  3.015 due to increase of antiferromagnetic interaction of Fe3+ ions and/or formation of low spin Fe3+ ions in the glass matrix. With initial 0.5 wt.% doping of Fe2O3, less dense glass is formed with colloids of metallic Bi0 atoms. The absorption bands at 604 and 712 nm in F5 glass are ascribed to Bi0 and Bi+ radicals respectively. No characteristic Fe3+ absorption bands (spin-forbidden) are found. Fe2+ ions are increased at higher concentration of Fe2O3. Higher concentration of Fe2O3 is favorable for BO2O?, BO3, BiO6 and FeO6 symmetry unit leads to low band gap and high Urbach energy. By doping of Fe2O3 the dielectric parameters like dielectric constant (ε′), loss (tanδ and ac electrical conductivity (σac) are found to increase.  相似文献   

7.
LiI–AgI–B2O3 glasses mixed with different concentrations of V2O5 (ranging from 0 to 1.0 mol%) were prepared. Electrical and dielectric properties over wide ranges of frequency (10?2–107 Hz) and temperature (173–523 K) have been studied. Additionally spectroscopic properties viz., optical absorption and ESR spectra have been investigated. The optical absorption and ESR studies have revealed that vanadium ions do exist in both V4+ and V5+ states and the redox ratio is the highest in the glasses containing 0.8 mol% of V2O5. The results of conductivity measurements have indicated that there is a mixed conduction (both ionic and electronic). The ionic conduction seems to be dominant over polaron hopping only in the glasses containing V2O5 more than 0.8 mol% of V2O5. The impedance spectra have also indicated that the conduction is predominantly polaronic in nature. The frequency and temperature dependence of the electrical moduli as well as dielectric loss parameters have exhibited relaxation character attributed to the vanadyl complexes. The relaxation effects have been analyzed by the graphical method and from this analysis it has been established that there is a spreading of relaxation times. The results have been further discussed quantitatively in the light of different valance states of vanadium ions with the aid of the data on spectroscopic properties.  相似文献   

8.
《Journal of Non》2005,351(40-42):3246-3258
The effect of Fe2O3 content on electrical conductivity and glass stability against crystallization in the system PbO–Fe2O3–P2O5 has been investigated using Raman, XRD, Mössbauer and impedance spectroscopy. Glasses of the molar composition (43.3  x)PbO–(13.7 + x)Fe2O3–43P2O5 (0  x  30), were prepared by quenching melts in the air. With increasing Fe2O3 content and molar O/P ratio there is corresponding reduction in the length of phosphate units and an increase in the Fe(II) ion concentration, which causes a higher tendency for crystallization. Raman spectra of the glasses show that the interaction between Fe sites, which is essential for electron hopping, strongly depends on the cross-linking of the glass network. The electronic conduction of these glasses depends not only on the Fe(II)/Fetot ratio, but also on easy pathways for electron hopping in a non-disrupted pyrophosphate network. The Raman spectra of crystallized glasses indicate a much lower degree of cross-linking since more non-bridging oxygen atoms are present in the network. Despite the significant increase in the Fe2O3 content and Fe(II) ion concentration, there is a considerable weakening in the interactions between Fe sites in crystalline glasses. The impedance spectra reveal a decrease in conductivity, caused by poorly defined conduction pathways, which are result of the disruption and inhomogeneity of the crystalline phases that are formed during melting.  相似文献   

9.
Magnetic properties of disordered oxides involving oxide glasses have been investigated. Spin glass-like transition is observed for Fe2O3–TeO2 and MnO–TeO2 glasses in temperature dependence of dc susceptibility, although magnetic transition does not take place for MnO–TeO2 glasses with low concentration of manganese ion above 2 K at least. The mechanism of magnetic transition observed for Fe2O3–TeO2 glasses is discussed on the basis of dc susceptibility obtained under conditions of field cooling and zero field cooling, magnetic field dependence of magnetization at low temperatures, and frequency dependence of spin-freezing temperature derived from temperature dependence of ac susceptibility. Magnetic properties of disordered ZnFe2O4 thin film prepared by a radio frequency sputtering method have been also studied. The disordered ZnFe2O4 thin film exhibits ferrimagnetic behavior with high magnetization even at room temperature. At the same time, the thin film shows spin-freezing at around 320 K. Temperature dependence of nonlinear susceptibility leads to a conclusion that this transition is explainable in terms of superparamagnetism with magnetic interaction among clusters.  相似文献   

10.
《Journal of Non》2006,352(21-22):2100-2108
Electrical and optical properties of phosphate glasses containing vanadium and manganese ions in the xP2O5–[(100  x)(V2O5 + MnO)] (PVM) system have been investigated. This is the last article of a III-part series devoted to the electronic properties of phosphate glasses containing a mixture of transition ions. The first article was devoted to the electrical conductivity of glasses having the general composition: xP2O5–[(100  x)(V2O5 + Fe2O3)] (PVF). Competitive transport of small polarons on V and Fe ion sites was found to contribute to a mixed transition-ion effect (MTE) in PVF glasses. Several features of MTE were found to be similar to the well known mixed alkali effect, observed in glasses containing two alkali ions. In the second article, optical absorption and electronic conduction of xP2O5–[(100  x)(Fe2O3 + MnO)] (PFM) glasses were reported. In the absence of competitive transport between the two transition ions (since Mn ions were determined not to contribute to dc conduction), MTE was not observed. The most important feature of PFM glasses was a sharp increase in resistivity at a critical concentration of iron ions, similar to ‘metal–insulator transition’ (MIT). In the present article, we report a resistivity transition in PVM glasses which is similar to that exhibited by the glasses of the PFM series. While Fe ions contributed the carriers in the PFM glasses, V ions serve the same purpose in the PVM compositions. As the concentration of vanadium ions, nV, is decreased in the composition range 0.82 > nV > 0.40, resistivity (ρ) increases marginally. For glasses with 0.2 < nV < 0.40, resistivity and the activation energy for dc conduction (W) increase sharply with decreasing nV, marking the incidence of an MIT-type transition. As in the PFM glasses, the observation of MIT coincides with the transformation of small polarons to small bipolarons, which is confirmed by the shifting of the small polaron optical absorption band to higher energies with decreasing V concentration.  相似文献   

11.
Shaaban M. Salem 《Journal of Non》2012,358(11):1410-1416
Homogeneous (50P2O5–(30 ? x)PbO–20NaF–xWO3 where x = 0.0, 5, 10 and 15 mol%) glasses were synthesized using a melt-quenching method. The short range structures of the phosphate samples were examined by Fourier transform infrared spectroscopy. The infrared spectral studies have pointed out the existence of conventional PO4, WO4 and WO6 structural units in the glass network, the number of WO4 tetrahedra decreases as WO3 concentration increases. The optical transmittance and reflectance spectrum of the glasses have been recorded in the wavelength range of 190–1100 nm. The values of the optical band gap Eop for all types of electronic transitions and refractive index have been determined and discussed. The real and imaginary parts ε1 and ε2 of the dielectric constant have been determined. The type of electronic transitions in the present glass system is indirectly allowed and the high values for the refractive index and dispersion are recorded due to the high polarizability of tungsten ions. The results of refractive indices as determined reveal the homogeneity of samples and were found to depend on the glass composition. The electrical properties of the glasses were investigated by ac conductivity from 0.12 to 100 kHz for temperatures ranging from room temperature to 600 K. The study of dielectric properties suggested increase in the insulating character of the glass system with increase in the content of WO3. The ac conductivity in the high temperature region seems to be connected mainly with the polarons involved in the process of transfer from W4+ to W5+ ions.  相似文献   

12.
A series of borophosphate glasses in the composition (B2O3)0.10–(P2O5)0.40–(CuO)0.50?x–(MoO3)x; 0.05 ? x ? 0.50 have been investigated for room temperature density and dc conductivity over the temperature range from 350 to 650 K. The density decreased with increase in MoO3 over the composition range studied except a slight increase around 0.35 mole fraction. The observed initial decrease in conductivity with the addition of MoO3 has been attributed to the hindrance offered by the Mo+ ions to the electronic motions. The observed peak-like behavior in conductivity in the composition range 0.20 – 0.50 mol% of MoO3 is ascribed to the mixed transition metal ion effect (MTE). Mott’s small polaron hopping model has been used to analyze the high temperature conductivity data and the activation energy for conduction has been determined. The low temperature conductivity has been analyzed in view of Mott’s and Greaves variable range hopping models. It is for the first time that conduction mechanisms have been explored and MTE detected in mixed transition metal ions doped borophosphate glasses.  相似文献   

13.
Sodiumsulpho borophosphate glasses with composition (40 ? x)Na2SO4–30B2O3–30P2O5: xMnO with x ranging from 0 to 5.0 mol% were manufactures. Dielectric spectra have been studied over a wide frequency range of 102–105 Hz and in the temperature range within 30–250 °C. The valance states of manganese ions and their ligand coordination in the glass network have been investigated using optical absorption, luminescence and ESR spectroscopy. The analysis of the these results has indicated that the manganese ions exist both in Mn2+ as well as in Mn3+ states and occupy prevailingly octahedral positions and serve as modifiers similarly to Na+ ions The values of dielectric parameters (dielectric constant, ε′(ω), loss tan δ and ac conductivity, σac) were found to increase with increasing MnO content. They play a role of modifiers similarly to Na+ ions, create bonding defects and free ions viz., [SO4]2?, [POO1/2O2]2?, [POO0/2O3]3–, Na+ and (NaSO4)?. The migration of these charge carriers would build up space charge polarization and may be responsible for the enhanced dielectric parameters. The ac conductivity also is enhanced with increasing MnO content. The mechanism responsible for such increase is well explained based on the modifying action of Mn2+ ions.  相似文献   

14.
《Journal of Non》2007,353(52-54):4783-4791
Phosphate glasses have been prepared by melting batch materials in electric furnaces, induction furnaces, and in microwave ovens. In the present work mixtures of (NH4)2HPO4 and Fe3O4 or Fe2O3 were exposed to microwave energy, heated to 1200 °C, and cast to produce iron phosphate glasses. Glasses were also produced in electric furnaces for comparison. The material was analyzed by X-ray diffraction, Mössbauer spectroscopy, and differential thermal analysis. For magnetite-based glasses produced in an electric furnace, the Fe2+/(Fe2+ + Fe3+) ratio is compatible with the value in the batch material. The Fe2+/(Fe2+ + Fe3+) ratio is higher for glasses produced in a microwave oven. Glasses with nominal composition 55Fe3O4–45P2O5 (mol%) produced in an electric furnace present an arranged magnetic phase with hyperfine field that could be associated to hematite (estimated to be 21%). All the glasses submitted to heat treatments for crystallization present the following crystalline phases: FePO4, Fe3(PO4)2, Fe(PO3)3, Fe(PO3)2 and Fe7(PO4)6. The amount of these phases depends on the glass composition, and glass preparation procedure. Microwave heating allows to reach melting temperatures at high heating rates, making the procedure easy and economical, but care should be taken concerning the final Fe2+/(Fe2+ + Fe3+) ratio.  相似文献   

15.
Modified iron phosphate glasses have been prepared with nominal molar compositions [(1?x)·(0.6P2O5–0.4Fe2O3)]·xRySO4, where x = 0–0.5 in increments of 0.1 and R = Li, Na, K, Mg, Ca, Ba, or Pb and y = 1 or 2. In most cases the vast majority or all of the sulfate volatalizes and quarternary P2O5–Fe2O3–FeO–RyOz glasses or partially crystalline materials are formed. Here we have characterized the structure, thermal properties, chemical durability and redox state of these materials. Raman spectroscopy indicates that increasing modifier oxide additions result in depolymerization of the phosphate network such that the average value of i, the number of bridging oxygens per –(PO4)– tetrahedron, and expressed as Qi, decreases. Differences have been observed between the structural effects of different modifier types but these are secondary to the amount of modifier added. Alkali additions have little effect on density; slightly increasing Tg and Td; increasing α and Tliq; and promoting bulk crystallization at temperatures of 600–700 °C. Additions of divalent cations increase density, α, Tg, Td, Tliq and promote bulk crystallization at temperatures of 700–800 °C. Overall the addition of divalent cations has a less deleterious effect on glass stability than alkali additions. 57Fe Mössbauer spectroscopy confirms that iron is present as Fe2+ and Fe3+ ions which primarily occupy distorted octahedral sites. This is consistent with accepted structural models for iron phosphate glasses. The iron redox ratio, Fe2+/ΣFe, has a value of 0.13–0.29 for the glasses studied. The base glass exhibits a very low aqueous leach rate when measured by Product Consistency Test B, a standard durability test for nuclear waste glasses. The addition of high quantities of alkali oxide (30–40 mol% R2O) to the base glass increases leach rates, but only to levels comparable with those measured for a commercial soda-lime-silica glass and for a surrogate nuclear waste-loaded borosilicate glass. Divalent cation additions decrease aqueous leach rates and large additions (30–50 mol% RO) provide exceptionally low leach rates that are 2–3 orders of magnitude lower than have been measured for the surrogate waste-loaded borosilicate glass. The P2O5–Fe2O3–FeO–BaO glasses reported here show particular promise as they are ultra-durable, thermally stable, low-melting glasses with a large glass-forming compositional range.  相似文献   

16.
The complicated structural speciation in boroaluminosilicate glasses leads to a mixed network former effect yielding nonlinear variation in many macroscopic properties as a function of chemical composition. Here we study the composition–structure–property relationships in a series of sodium boroaluminosilicate glasses from peralkaline to peraluminous compositions by substituting Al2O3 for SiO2. Our results reveal a pronounced change in all the measured physical properties (density, elastic moduli, hardness, glass transition temperature, and liquid fragility) around [Al2O3]–[Na2O] = 0. The structural origin of this change is elucidated through nuclear magnetic resonance analyses and topological considerations. Furthermore, we find that addition of 1 mol% Fe2O3 exerts a complicated impact on the measured properties.  相似文献   

17.
S. Azianty  A.K. Yahya  M.K. Halimah 《Journal of Non》2012,358(12-13):1562-1568
Ternary tellurite glasses with the chemical formula 80TeO2–(2 ? x)ZnO–xFe2O3 (x = 0–15 mol%) have been prepared by the melt-quenching method. Elastic and structural properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo overlap method at 5 MHz and Fourier transform infrared (FTIR) spectroscopy, respectively. Both longitudinal and shear velocity showed a large increase of 3.40% and 4.68%, respectively, at x = 5 mol% before a smaller increase for x > 5 mol%. Interestingly, longitudinal modulus (L), shear modulus (G), bulk modulus (K) and Young's modulus (E) recorded similar trends with increase in Fe2O3. The initial large increases in shear and longitudinal velocity and related elastic moduli observed at x = 5 mol% are suggested to be due to structural modification which enhances rigidity of the glass network. FTIR analysis showed increase in bridging oxygen (BO) as indicated by the relative intensity of the TeO4 assigned peaks and increase in intensity of the FeO6 assigned peak (~ 451 cm? 1) which indicates that Fe acts as a modifier in the glass network. The increase in rigidity of the glass system is suggested to be due to the increase of BO together with the formation of strong covalent FeO bond. Quantitative analysis based on the bulk compression and ring deformation models showed that the kbc/kexp value decreased gradually from 2.41 (x = 0 mol%) to 2.02 (x = 15 mol%) which infers that the glass system became a relatively more open 3D network as Fe2O3 was increased.  相似文献   

18.
A glass with the composition of 35Na2O–24Fe2O3–20B2O3–20SiO2–1ZnO (mol%) was melted, quenched, using a twin roller technique, and subsequently heat treated in the range 485–750 °C for 1–2 h. This led to the crystallization of magnetite as the sole or the major crystalline phase.Heat treatment at lower temperatures resulted in the crystallization of magnetite crystals 7–20 nm in diameter, whereas heat treatment at higher temperatures produced higher quantities of magnetite and much larger crystals. The room temperature magnetization and coercive force values were in the range of 6–57 emu g? 1 and 0–120 Oe, respectively for the heat treated glasses.  相似文献   

19.
J.Y. Hu  H.-W. Yang  Y.J. Chen  J.S. Lin  C.H. Lai  Y.M. Lee  T. Zhang 《Journal of Non》2011,357(11-13):2246-2250
This study explores a series of optical, thermal, and structural properties based on 60P2O5–30ZnO–10Al2O3 (60P) glasses that doped with varied rare earth (RE) elements Yb2O3 and P2O5 components replaced by SiO2. It was found that the glasses density decrease with SiO2 concentration added to replace P2O5, whereas they increase with increased concentration of Yb3+-doped. Moreover, the glasses transition temperature, softening temperature, and refractive index increase with Yb3+ concentrations added, whereas the thermal expansion coefficient decreases. For the 60P glasses, 7 mol% Yb2O3 doped has the maximum fluorescence which is suppressed when Yb2O3 is doped up to 9 mol%. In addition, maximum lifetime was found to be 2.68 ms at an optimal Yb3+-doping at 1 mol% for 53P2O5–7SiO2–30ZnO–10Al2O3 glass.  相似文献   

20.
《Journal of Non》2006,352(26-27):2737-2745
Electrical properties of A2.6+xTi1.4−xCd(PO4)3.4−x (A = Li, K; x = 0.0–1.0) phosphate glasses are investigated over a frequency range from 42 Hz to 1 MHz at different temperatures. Impedance spectroscopy is used to separate the bulk conductivity from electrode effect of electrical conductivity data. The bulk dc conductivity is Arrhenius activated, with activation energies and pre-exponential factors following the Meyer–Neldel rule. The real part of ac conductivity shows universal power law feature. The variation of dielectric constant with frequency is attributed to ion diffusion and polarization occurring in the phosphate glasses. The frequency dependent imaginary part of electric modulus M″(ω) plot shows non-Debye feature in conductivity relaxation. The Kohlrausch–Williams–Watts stretched exponential function was used to describe the modulus spectra and the stretching exponent β is found to be temperature independent. Scaling in M″(ω) shows that the electrical relaxation mechanisms are independent of temperature for given composition at different temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号