首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rongrong Xu  Ying Tian  Lili Hu  Junjie Zhang 《Journal of Non》2011,357(11-13):2489-2493
TmF3 doped TeO2–ZnO–La2O3 (TZL) glasses and fibers have been prepared by the conventional melt-quenching and suction casting methods, respectively. 2 μm emission properties and energy transfer mechanisms of the TZL glasses and fibers have been analyzed and discussed. The oscillator strength, Judd–Ofelt parameters, radiative transition probability and radiative lifetime of Tm3+ have been calculated based on the absorption spectra and Judd–Ofelt theory. The maximum emission cross-section of Tm3+ is 6.9 × 10?21 cm2 near 2 μm. Emission spectra have been obtained from both TZL fibers and bulk glass when excited with a 794 nm pump. The results of 2 μm emission spectra indicate that the line width of Tm3+ measured in fibers is narrower than that in the bulk glass sample. The peak position of the emission spectra shifts to longer wavelength with increment of the fiber length.  相似文献   

2.
《Journal of Non》2007,353(16-17):1508-1514
This paper reports on the spectroscopic properties and energy transfer in Ga2O3–Bi2O3–PbO–GeO2 glasses doped with Tm3+ and/or Ho3+. From the optical absorption spectra of Tm3+, Judd–Ofelt intensity parameters, radiative transitions probabilities, fluorescence branching ratios, and radiative lifetimes have been calculated using Judd–Ofelt theory. The measured differential scanning calorimetry result shows that the glass exhibits excellent stability against devitrification with ΔT = 129 °C. The measured luminescence spectra show that the 3H4  3F4 transition of Tm3+ upon 808 nm laser diode excitation possess a broad full width at half-maximum of ∼126 nm. The maximum value calculated stimulated emission cross-section and the measured lifetime of 3H4 level from the 1.47-μm transition are ∼4.73 × 10−21 cm2 and ∼0.239 ms, respectively. It is noticed that codoping of Ho3+ could significantly enhanced the ratio of the intensity of 1.47–1.80 μm by energy transfer via Tm3+: 3F4  Ho3+: 5I7.  相似文献   

3.
The Eu3 +/Tb3 +/Tm3 + triply-doped glasses with the composition of CaO―Al2O3―B2O3―RE2O3 (RE = Eu,Tb,Tm) have been synthesized by melt quenching method. The photoluminescence of these Eu3 +/Tb3 +/Tm3 + triply-doped glasses (CaAlB:RE3 +) were studied and the emission spectra combining with blue, green and reddish orange bands were observed. Under 360 nm wavelength excitation the white light emission is achieved when the concentration (x) of Tm3 + in Ca0.931 ?xAlB:Eu3 +0.038,Tb3 +0.031,Tm3 +x glass is in the range of 0.0013-0.011 per mol matrix. In addition, the energy transfer (ET) between Tb3 + and Eu3 + ions in Eu3 +/Tb3 +/Tm3 + triply-doped glasses was validated and the electric dipole–dipole interaction is responsible for the ET process of Tb3 +  Eu3 + at low concentrations. Hence, the Eu3 +/Tb3 +/Tm3 + triply-doped aluminoborate glass could be a potential candidate for white LEDs.  相似文献   

4.
W.J. Zhang  Q.J. Chen  Q.Y. Zhang  Z.H. Jiang 《Journal of Non》2011,357(11-13):2278-2281
Transparent glass-ceramics containing MF2(MF3):Ho3+,Tm3+ (M = Ca, Ba, and La) nanocrystals have been prepared by melt quenching and subsequent thermal treatment. X-ray diffraction and transmission electron microscopy analysis confirmed the precipitation of MF2 (MF3) nanocrystals among the glass matrix. Energy-dispersive X-ray spectroscopy results evidenced the incorporation of Tm3+ and Ho3+ into the MF2 nanocrystals. Intense 2.0 μm emission originating from the Ho3+: 5I7  5I8 transition was achieved upon excitation with 808 nm laser diode. A large ratio of the forward Tm3+ → Ho3+ energy transfer constant to that of the backward process indicated high efficient energy transfer from Tm3+ (3F4) to Ho3+ (5I7), and benefited from the reduced ionic distances of Tm3+–Tm3+ and Tm3+–Ho3+ pairs and low phonon energy environment with the incorporation of rare earth ions into the precipitated MF2 nanocrystals. The results indicate that oxyfluoride glass-ceramic is a promising candidate for 2.0 μm laser.  相似文献   

5.
Chalcohalide glass with a composition of 65GeS2–25Ga2S3–10CsI (in mol%) doped with 0.6 wt% Tm3+ ions was prepared by conventional melt–quench method. By heat treating the precursor glass at 20 °C above its glass transition temperature Tg for different durations, IR transparent glass ceramics were obtained. X-ray diffraction (XRD) and scanning electron microscope (SEM) showed that Ga2S3 crystallites were precipitated after heat treatment and their grain sizes were in nano-scale and increased with the elongation of heat treated time. Mid-IR luminescence properties of the glass and transparent glass ceramic samples were investigated. The emissions at 2.3 and 3.8 μm corresponding to optical transitions of 3H4  3H5 and 3H5  3F4 of Tm3+ ions were significantly enhanced by the presence of Ga2S3 nanocrystals and reached a maximum after 8 hours treatment.  相似文献   

6.
《Journal of Non》2007,353(16-17):1676-1680
Spectroscopic properties of Tm3+ in (1  x) (Ge0.25Ga0.10S0.65)–xBr (or CsBr) glasses (x = 0.0 and 0.1) were investigated. Emission properties of Tm3+ in 0.9(Ge0.25Ga0.10S0.65)–0.1Br glass were similar to those in Ge0.25Ga0.10S0.65 glass, while there was significant improvement when doped into 0.9(Ge0.25Ga0.10S0.65)–0.1CsBr glass. The lifetime of the Tm3+:3H4 level increased from 0.23 to 1.22 msec with 10 mol% CsBr addition. The presence of Cs+ facilitated the formation of [GaS3/2Br] units by donating an electron to the Ga tetrahedron, resulting in the homogeneous distribution of Br. In this way, Tm3+ ions have their local environment made of Br only. When Br ions were added instead of CsBr, [GaS(4−x)/2Br] units with x > 1 were formed and Tm3+ ions were surrounded by both S and Br, producing a high phonon environment.  相似文献   

7.
D. Singh  S. Kumar  R. Thangaraj 《Journal of Non》2012,358(20):2826-2834
Optical and electrical properties of the (Se80Te20)100 ? xAgx (0  x  4) ultra-thin films have been studied. The ultra-thin films were prepared by thermal evaporation of the bulk samples. Thin films were annealed below glass transition temperature (328 K) and in between glass transition temperature and crystallization temperature (343 K). Thin films annealed at 343 K showed crystallization peaks for Se–Te–Ag phases in the XRD spectra. The transmission and reflection of as-prepared and annealed ultra-thin films were obtained in the 300–1100 nm spectral region. The optical band gap has been calculated from the transmission and reflection data. The refractive index has been calculated by the measured reflection data. It has been found that the optical band gap increases, but the refractive index, extinction coefficient, real and imaginary dielectric constant decrease with increase in Ag content. The optical band gap and refractive index show the variation in their values with increase in the annealing temperature. The extinction coefficient increases with increasing annealing temperature. The surface morphology of ultra-thin films has been determined using a scanning electron microscope (SEM). The measured dc conductivity, under a vacuum of 10? 5 mbar, showed thermally activated conduction with single activation energy in the measured temperature range (288–358 K) and it followed Meyer–Neldel rule. The dc activation energy decreases with increase in Ag content in pristine and annealed films. The results have been analyzed on the bases of thermal annealing effects in the chalcogenide thin films.  相似文献   

8.
Bi–Er–Tm co-doped germanate glasses and Bi, Er, Tm singly doped glasses were prepared and characterized through absorption spectra, NIR emission spectra and decay lifetime. A super broadband near-infrared emission from 1000 nm to 1600 nm, covering the whole O, E, S, C, and L bands, was observed in the Bi–Er–Tm co-doped samples due to the result of the overlapping of the Bi related emission band (centered at 1300 nm), the emission from Er3+ 4I13/2  4I15/2 transition (centered at 1534 nm) as well as the emission from Tm3+ 3H4  3F4 transition (centered at 1440 nm), which is essential for broadly tunable laser sources and broadband optical amplifiers. The energy transfer process was also discussed at the end of the paper.  相似文献   

9.
Chalcogenide bulk glasses Ge20Se80?xTex for x  (0, 10) have been prepared by systematic replacement of Se by Te. Selected glasses have been doped with Er and Pr, and all systems have been characterized by transmission spectroscopy, measurements of dc electrical conductivity and low-temperature photoluminescence. Absorption coefficient has been derived from measured transmittance and estimated reflectance. Both absorption and low-temperature photoluminescence spectra reveal shifts of absorption edge and/or dominant luminescence band to longer wavelength due to Te  Se substitution. Arrhenius plots of dc electrical conductivity, in the temperature range 300–450 K, are characterized by activation energies roughly equal to the half of the optical gap. Arrhenius plots for temperatures below 300 K yield much lower activation energies. The dominant low-temperature luminescence band centered at about half the band gap energy starts to quench above 200 K and a new band appears at 900 nm. The band at 900 nm, due to band to band transitions, overwhelms the spectra at room temperature. Systems doped with Er exhibit a strong luminescence due to 4I13/2  I15/2 transition of Er3+ ion at 1539 nm, and Pr doped samples exhibit a relatively weak luminescence peak at 1590 nm, which we tentatively assign to 3F3  3H4 transition of Pr3+ ion.  相似文献   

10.
Tm3+-doped and Tm3+/Yb3+-codoped TeO2–ZnO–Bi2O3 (TZB) glasses are prepared by melt-quenching method. The Judd-Ofelt intensity parameters (Ωt t = 2, 4, 6), radiative transition rate, and radiative lifetime of Tm3+ are calculated based on the absorption spectra. The 1.8 μm emission of the samples is investigated under 980 nm laser excitation. The absorption, emission cross-sections, and gain coefficient of Tm3+:3F4  3H6 are calculated. The energy transfer processes of Yb3+–Yb3+ and Yb3+–Tm3+ are analyzed, the results show that the Yb3+ ions can transfer their energy to Tm3+ ions with large energy transfer coefficient, and a maximum efficiency of 79%.  相似文献   

11.
Copper ions incorporated into alkaline earth zinc borate glasses 10RO + 30ZnO + 60B2O3 (R = Mg, Ca and Sr) and 10SrO + (30 ? x)ZnO + 60B2O3 + xCuO (x = 0, 0.1, 0.3, 0.5, and 0.7 wt.%) were characterized by electron paramagnetic resonance (EPR), optical absorption and FTIR techniques. The EPR spectra of all the glass samples exhibit resonance signals characteristic of Cu2+ ions. The values of spin-Hamiltonian parameters indicate that the Cu2+ ions in alkaline earth zinc borate glasses were present in octahedral sites with tetragonal distortion. The spin concentration (N) participating in resonance was calculated as a function of temperature for strontium zinc borate (SrZB) glass sample containing 0.7 wt.% of Cu2+ ions and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility (χ) was calculated at different temperatures and the Curie constant was evaluated from the 1/χ-T graph. The optical absorption spectra of these samples show only one absorption band. The optical band gap energies (Eg) and Urbach energy (ΔE) are calculated from their ultraviolet edges. The FTIR studies show different stretching and bending vibrations of alkaline earth zinc borate glasses.  相似文献   

12.
《Journal of Non》2007,353(13-15):1407-1413
We report the results of emission and amplification in Tm3+- and Er3+-fibers for signal gain in the 1460–1600 nm region, which covers a large part of S-, C- and L-bands of silica fiber optical communication networks. The paper explains the mechanism for alleviating the pump-excited absorption in Er3+-doped and Tm3+-doped tellurite fibers for maximizing the pump inversion efficiency at 980 nm using the co-dopants and via the structural modification of TeO2 glass by incorporating a high phonon energy oxide namely, B2O3. The spectroscopic data and gain bandwidth of Er-doped fibers are reported in the C- and L-bands. To date the measured maximum relative gain in short fibers of 5–10 cm in length in C- and L-bands are: 30 dB and 15 dB, respectively. By comparison the internal gain in a 20 cm long Tm/Yb ion co-doped fiber pumped with a 980 nm source was 7 dB.  相似文献   

13.
The sodium borosilicate glass doped with Cu7.2S4 quantum dots was prepared by using both sol–gel and atmosphere control methods. The formation mechanism and the microstructure of the glass were examined using differential thermal analysis and thermal gravimeter (TG-DTA), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectra (EDX), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The results revealed that Cu7.2S4 quantum dots in orthorhombic crystal system had formed in the glass, and the size ranged from 9 nm to 21 nm. In addition, Z-scan technique was used to measure the third-order optical nonlinearities of the glass. The results indicated that the third-order optical nonlinear refractive index γ, the absorption coefficient β, and the susceptibility χ(3) of the glass were 1.11 × 10? 15 m2/W, 8.91 × 10? 9 m/W, and 6.91 × 10? 10 esu, respectively.  相似文献   

14.
The effects of substituting Si by M4 + cations in soda-lime silica glasses were analyzed by impedance spectroscopy in the frequency range of 1 Hz–1 MHz. The glass composition was (mol%) 22Na2O·8CaO·65SiO2·5MO2, M = Si, Ti, Ge, Zr, Sn, and Ce. Although the Na+ concentration in the glasses is constant, the Zr-containing glass exhibits the highest dc conductivity and the lowest activation energy, while the Ce-containing glass exhibits the lowest conductivity. The activation energies obtained experimentally agree with those obtained by a theoretical equation proposed by Anderson and Stuart. The differences in electrical conductivity presented by the several M-containing glasses are attributed to the effect that the M4 + ion has on the mobility of the diffusing Na+ ion.  相似文献   

15.
《Journal of Non》2007,353(13-15):1251-1254
The local structures around Tm3+ in Ge0.25Ga0.10S0.65 and 0.90 (Ge0.25Ga0.10S0.65)  0.10CsBr glasses were investigated using Extended X-ray absorption fine structure (EXAFS) spectroscopy. In Ge0.25Ga0.10S0.65 glass, Tm3+ ions are surrounded by approximately seven S ions. Addition of 10 mol% CsBr resulted in significant changes in the EXAFS spectrum of Tm3+ ions due to the changes in the local structure surrounding Tm3+ ions. The first-nearest coordination shell around Tm3+ ion is predominantly composed of about six Br ions in 0.90 (Ge0.25Ga0.10S0.65)  0.10CsBr glass.  相似文献   

16.
The melt quenching method was used to synthesize the Ag0 nanoparticles and Er3 + ions co-doped zinc tellurite glass. The glasses were characterized by differential thermal analyzer, UV–VIS-IR absorption, photoluminescence spectroscopy and TEM imaging. Heat treatment at different annealing time intervals above the glass transition temperature was applied to reduce the Ag+ ions to Ag0 NPs. The influence of heat treatment on structural and optical properties is examined. Intense and broad up-conversion emissions of silver are recorded in the visible region. Up-conversion luminescence spectra revealed three major emission peaks at 520, 550 and 650 nm originating from 2H11/2, 4S3/2 and 4F9/2 levels, respectively. An efficient enhancement in visible region is observed for samples containing silver NPs. The absorption plasmon peaks are evidenced around 560 and 594 nm. The effect of localized surface plasmon resonance and the energy transfer from the surface of silver NP to trivalent erbium ions are described as the sources of enhancement.  相似文献   

17.
Mechanisms of the compositional dependence of blue emission from Nd3+/Tm3+ co-doped Ge–Ga–S–CsBr chalcohalide glasses were investigated. The blue upconversion emissions (centered at 475 nm) due to the Tm3+: 1G4  3H6 transition decreased as the CsBr/Ga ratio in glasses while the other upconversion emissions from the Nd3+ ions increased. Changes in the local environment of rare-earth ions incurred by the CsBr addition significantly increased the excited state absorption within Nd3+ ions. This resulted in the decrease in the Nd3+  Tm3+ energy transfer rates that led to the large decrease in blue upconversion emission.  相似文献   

18.
Photoluminescence properties of Sm3+, Dy3+, and Tm3+-doped transparent oxyfluoride silicate glass ceramics containing CaF2 nanocrystals were reported. Emission bands of 4G5/2  6H5/2 (562 nm), 4G5/2  6H7/2 (598 nm), 4G5/2  6H9/2 (645 nm) and 4G5/2  6H11/2 (706 nm) for the Sm3+: glass and glass ceramic, with an excitation at 6H5/2  4F7/2 (402 nm) have been recorded. Of them, 4G5/2  6H7/2 (598 nm) has shown a bright orange emission. With regard to the Dy3+: glass, a bright fluorescent yellow emission at 575 nm (4F9/2  6H13/2) and blue emission at 481 nm (4F9/2  6H15/2) have been observed, apart from 662 nm (4F9/2  6H11/2) emission transition with an excitation at 386 nm (6H15/2  4I13/2 + 4F7/2) wavelength. Emission bands of 1G4  3F4 (650 nm) and 1G4  3H5 (795 nm) transitions for the Tm3+: glass and glass ceramic, with an excitation at 3H6  1G4 (467 nm) have been observed. Of them, 1G4  3F4 (650 nm) has shown bright red emission. Decay lifetime measurements were also carried out for all the observed Sm3+, Dy3+, and Tm3+-doped glass and glass ceramic emission bands.  相似文献   

19.
《Journal of Non》2006,352(50-51):5296-5300
In this work, we present the synthetic route and the optical characterization of poly(styrene sulfonate) (PSS) films doped with Neodymium ions (Nd3+). In the synthesis optimization we obtained the maximum incorporation of Nd3+ in the matrix about 14.0%. The UV–Vis–NIR curve presents an intense characteristic electronic transition 4I9/2  4F5/2 + 2H9/2 at 800 nm. It was also shown the radiative transition 4F3/2  4I11/2 at about 1060 nm. Judd–Ofelt theory was used in order to obtain the near infrared Nd3+ radiative transition rate, emission cross-section and radiative lifetime.  相似文献   

20.
Glasses with composition xLi2O-(30 ? x)Na2O–10WO3–60B2O3 (where x = 0, 5, 10, 15, 20, 25 and 30 mol%) have been prepared using the melt quenching technique. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system through density and modulated DSC studies. The density and glass transition temperature of the present gasses varies non-linearly, the exhibiting the mixed alkali effect. From the optical absorption studies, the values of direct optical band gap, indirect optical band gap energy (Eo) and Urbach energy(ΔE) have been evaluated. The values of Eo and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter have been examined to check the correlation among them and bond character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter, the present Li2O–Na2O–WO3–B2O3 glasses were classified as normal ionic (basic) oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号