首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel Na2O–K2O–CaO–MgO–SrO–B2O3–P2O5 borophosphate glass fiber is prepared. The thermal properties including differential thermal analysis (DTA) and viscosity measurement of the glass were presented. The tensile strength of the glass fiber is measured. The reaction of the glass fibers in the SBF solution is characterized by XRD, FTIR and SEM. XRD and FTIR indicate that the carbonate hydroxyapatite has formed rapidly on the glass. Cell attachment, spreading and proliferation on the glass are determined by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay method using Human osteosarcoma MG-63 cells. The bioactivity and biocompatibility of the glass fiber make it a good potential prospect in the field of tissue engineering.  相似文献   

2.
A transparent glass with the composition 60B2O3–30Li2O–10Nb2O5 (mol%) was prepared by the melt quenching technique. The glass was heat-treated with and without the application of an external electric field. The as-prepared sample was heat-treated (HT) at 450, 500 and 550 °C and thermoelectric treated (TET) at 500 °C. The following electric fields were used: 50 kV/m and 100 kV/m. Differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman, dc and ac conductivity, as a function of temperature, were used to investigate the glass and glass-ceramics properties. LiNbO3 crystals were detected, by XRD, in the 500 °C HT, 550 °C HT and 500 °C TET samples. The presence of an external electric field, during the heat-treatment process, improves the formation of LiNbO3 nanocrystals at lower temperatures. However, in the 550 °C HT and in the TET samples, Li2B4O7 was also detected. The value of the σdc decreases with the rise of the applied field, during the heat-treatment. This behavior can indicate an increase in the fraction of the LiNbO3 crystallites present in these glass samples. The dc and ac conduction processes show dependence on the number of the ions inserted in the glass as network modifiers.The Raman analysis suggests that the niobium ions are, probably, inserted in the glass matrix as network formers.These results reflect the decisive effect of temperature and electric field applied during the thermoelectric treatment in the structure and electric properties of glass-ceramics.  相似文献   

3.
The structure of glasses within the system Li2O–Al2O3–B2O3–P2O5 has been studied through 31P, 11B and 27Al Nuclear Magnetic Resonance, and the effect of Al2O3 substitution by B2O3 and P2O5 network formers on the structure and properties investigated for a constant Li2O content. Multinuclear NMR results reveal that substitution of Al2O3 for B2O3 and P2O5 network formers in a glass with composition 50Li2O·15B2O3·35P2O5 produces a change in boron environment from four-fold to three-fold coordination. Meanwhile aluminum can be present in four-, five- and six-fold coordinations a higher amount of Al(IV) groups is found for increasing alumina contents. The behavior of the glass transition temperature and electrical conductivity of the glasses has been interpreted as a function of the structural changes induced in the glass network when alumina is substituted for B2O3, P2O5 or both. Small additions of alumina produce a drastic increase in glass transition temperature, while it does not change for [Al2O3] greater than 3 mol.%. However, the electrical conductivity shows very different behavior depending on the type of substitution; it can remain constant when B2O3 content decreases or sharply decrease when P2O5 is substituted by Al2O3, which is attributed to a higher amount of BO3 and phase separation.  相似文献   

4.
The results of a structural study combining NMR and Raman spectroscopy of several melt-derived glasses in the system Na2O–MgO–CaO–P2O5–SiO2 are presented. The Raman spectra show clear changes in the Si–O–Si vibrational modes (related to the bridging oxygen atoms, BO) and also verify the presence of non-bridging oxygen atoms (NBO), also named terminal oxygens. The intensity of the Si–O–NBO stretching mode depends on the cation concentration. It can be concluded from the NMR studies that the MgO-containing samples have orthophosphate units charge-compensated by Ca2+ and Mg2+. The silicate matrix also contains both types of two-valent cations and consists of Q2 and Q1 units. Similarly, the Na2O-containing samples contain isolated orthophosphate units in a silicate matrix (Q2 and Q3 units), both charge-compensated by mixed cations Ca2+ and Na+. These experimental data were compared with theoretical parameters given by the Stevels model, which is a suitable tool for understanding bioactive behavior of these glasses. Furthermore, results of the in vitro tests carried out in simulated body fluids are presented and compared with both Raman and NMR structural data.  相似文献   

5.
In an effort to design low-melting, durable, transparent glasses, two series of glasses have been prepared in the NaPO3–ZnO–Nb2O5–Al2O3 system with ZnO/Nb2O5 ratio of 2 and 1. The addition of ZnO and Nb2O5 to the sodium aluminophosphate matrix yields a linear increase of properties such as glass transition temperature, density, refractive index and elastic moduli. The chemical durability is also significantly, but nonlinearly, improved. The glass with the highest niobium concentration, 55NaPO3–20ZnO–20Nb2O5–5Al2O3 was found to have a dissolution rate of 4.5 × 10? 8 g cm? 2 min? 1, comparable to window glass. Structural models of the glasses were developed using Raman spectroscopy and nuclear magnetic resonance spectroscopy, and the models were correlated with the compositional dependence of the properties.  相似文献   

6.
Amorphous nanoheterogeneities of the size less than 100 Å have been formed in glasses of the Li2O–Nb2O5–SiO2 (LNS) and Li2O–ZnO–Nb2O5–SiO2 (LZNS) systems at the initial stage of phase separation and examined by transmission electron microscopy, small-angle X-ray and neutron scattering. Both LNS and LZNS nanoheterogeneous glasses exhibit second harmonic generation (SHG) even when they are characterized by fully amorphous X-ray diffraction (XRD) patterns. Chemical differentiation and ordering of glass structure during heat treatments at appropriate temperatures higher Tg lead to drastic increase of SHG efficiency of LNS glasses contrary to LZNS ones in the frame of amorphous state of samples. Following heat treatments of nanostructured glasses result in crystallization of ferroelectric LiNbO3 and non-polar LiZnNbO4 in the LNS and LZNS glasses, respectively. Taking into account similar polarizability of atoms in LNS and LZNS glasses, the origin of the principal difference in the second-order optical non-linearity of amorphous LNS and LZNS samples is proposed to connect predominantly with the internal structure of formed nanoheterogeneities and with their polarity. Most probably, amorphous nanoheterogeneities in glasses may be characterized with crystal-like structure of polar (LiNbO3) phase initiating remarkable SHG efficiency or non-polar (LiZnNbO4) phase, which do not initiate SHG activity. It gives an opportunity to vary SHG efficiency of glasses in a wide rage without remarkable change of their transparency by chemical differentiation process at the initial stage of phase separation when growth of nanoheterogeneities is ‘frozen’. At higher temperatures, LiNbO3 crystals identified by XRD precipitate in LNS glasses initiating even more increase of SHG efficiency but visually observable transparency is impaired.  相似文献   

7.
Glasses with composition xLi2O-(30 ? x)Na2O–10WO3–60B2O3 (where x = 0, 5, 10, 15, 20, 25 and 30 mol%) have been prepared using the melt quenching technique. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system through density and modulated DSC studies. The density and glass transition temperature of the present gasses varies non-linearly, the exhibiting the mixed alkali effect. From the optical absorption studies, the values of direct optical band gap, indirect optical band gap energy (Eo) and Urbach energy(ΔE) have been evaluated. The values of Eo and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter have been examined to check the correlation among them and bond character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter, the present Li2O–Na2O–WO3–B2O3 glasses were classified as normal ionic (basic) oxides.  相似文献   

8.
The experiments were carried out on studying the effect of phase separation on nucleation and crystallization in the glass based on the system of CaO–MgO–Al2O3–SiO2–Na2O. In the experiments, TiO2 was chosen as nucleating agent. Three batches of 5, 8 and 10 wt% TiO2 substitution were investigated by the techniques of DSC, XRD, FTIR and FESEM equipped with EDS. XRD and FTIR analysis indicated that the super cooled glasses were all amorphous, the heat treatment leading to nucleation would cause a disruption of silica network which followed phase separation. The phase separation followed the generation of crystal seeds Mg(Ti, Al)2O6. FESEM observation and EDS analysis revealed that the more TiO2 content of glass, the more droplet separated phase and crystal seeds after nucleation heat treatment. The main crystal phase is clinopyroxene, Ca(Ti, Mg, Al)(Al, Si)O6, of crystallized glass.  相似文献   

9.
10.
Cobalt ferrite–poly(N-vinyl-2-pyrrolidone) nanocomposites were prepared by drying a dispersion of cobalt ferrite (CoFe2O4) nanoparticles and poly(N-vinyl-2-pyrrolidone). Magnetic measurements indicate a superparamagnetic behavior. Zero-field-cooling magnetization experiments at 100 Oe show different trends depending on the CoFe2O4 nanoparticles size. For the smaller ones (3.9 nm), the blocking temperatures shift to lower temperatures with increasing concentration; however, this shift is not observed for the larger ones (6.6 nm). These differences can be related to the anisotropy constant of the CoFe2O4 nanoparticles and the interparticle dipolar interactions.  相似文献   

11.
The structural role, coordination geometry and valence of Fe in a series of Fe2O3–PbO–SiO2–Na2O glasses are studied by means of Fe-K-NEXAFS and EXAFS spectroscopies. Parameters for the study are the concentration of the Fe and Pb-oxides, the SiO2/Na2O ratio and the cast temperature. The EXAFS and NEXAFS results reveal that the role of Fe3+ depends on the concentration of Fe2O3. More specifically, in most of the studied quaternary systems, the Fe3+ ion is a glass former, i.e. the Fe atoms belong to FeO4 tetrahedra that participate in the formation of the glassy network. The role of Fe as an intermediate oxide is identified only in one sample with 20 wt% Fe2O3, where ~80 at.% of the Fe atoms are tetrahedrally coordinated with O atoms, while the remaining ~20 at.% of the Fe atoms occupy octahedral sites. It is also revealed that the tetrahedral coordination of Fe in the vitreous matrix is destroyed when a number of parameters is altered, such as the Tcast, the (Fe + Si)/O and the SiO2/Na2O ratio.  相似文献   

12.
B. Kościelska  A. Winiarski 《Journal of Non》2008,354(35-39):4349-4353
Sol–gel derived xNb2O5–(100 ? x)SiO2 films (where x = 100, 80, 60, 50, 40, 20, 0 mol%) were nitrided at various temperatures (800 °C, 900 °C, 1000 °C, 1100 °C and 1200 °C). The structural transformations occurring in the films as a result of ammonolysis were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The XRD results have shown that the temperatures below 1100 °C were too low to obtain a pure NbN phase in the samples. The AFM observations indicate that the formation of the NbN phase and the size of NbN grains are related to the silica content in the layer. NbN grains become more regular and larger as the niobium content increases. The maximum grain size of about 100 nm was observed for x = 100. Preparation of the Nb2O5–SiO2 sol–gel derived layers and the subsequent nitridation is a promising method of inducing crystalline NbN in amorphous matrices. It follows from the XPS results that a small amount of Nb2O5 remains in the films after nitridation at 1200 °C and that nitrogen reacted not only with Nb2O5 but also with SiO2.  相似文献   

13.
Ki-Dong Kim 《Journal of Non》2008,354(15-16):1715-1720
The influence of K2O/(MgO + K2O) on some melt properties, including crystallization during cooling of melts and glass-forming ability, was investigated in the Li2O–Al2O3–SiO2 system with low Al2O3 content. The dependence of viscosity on K2O/(MgO + K2O) above 1000 °C showed a monotonic decrease due to the reduction of [MgO4] concentration and the conductivity also decreased due to the larger ion radius of K. The temperature dependence of conductivity for all melts showed an abrupt change at one temperature due to crystallization in which temperature of crystallization decreases with increase of K2O. The crystallization behavior near liquidus temperature was studied quantitatively by calculating the crystal volume fraction from apparent viscosity value. The glass-forming ability of the melts was discussed by using data related with viscosity and crystallization. Finally, it was suggested that the melts with K2O/(MgO + K2O) ? 0.75 have a good glass-forming ability.  相似文献   

14.
A series of Li2O–Al2O3–ZrO2–SiO2 glasses doped with different concentrations of WO3 (0 to 5.0 mol.%) have been synthesized. Differential thermal analysis of the samples indicated increasing glass forming ability with the increasing concentration of WO3 in the glass matrix. A variety of spectroscopic (optical absorption, IR, Raman and ESR) and dielectric properties (over a range of frequency and temperature) of these glasses have been investigated. The optical absorption and ESR spectral studies have pointed out that a part of tungsten ions do exist in W5+ state in addition to W6+ state especially in the samples containing low concentration of WO3. The IR and Raman spectral studies have suggested that there is a decreasing degree of disorder in the glass network with increase in the concentration of WO3. The values of dielectric parameters viz., dielectric constant, loss and ac conductivity at any frequency and temperature are observed to decrease as the concentration of WO3 is increased. Such changes have been attributed to decrease of redox ratio or decreasing proportions of W5+ ions that act as modifiers in the glass network. The quantitative analysis of the results of ac conductivity and dielectric properties have indicated an increase in the insulating character of the glasses with the concentration of WO3; this is attributed to the presence of tungsten ions largely in W6+ ions that participate in the glass network forming with WO4 structural units.  相似文献   

15.
The atomic structures of two V2O5–P2O5 glasses and vitreous (v-) V2O5 were investigated by X-ray and neutron diffraction. The V=O double bond is a common characteristic of the VOn units that constitute the structures of the glasses. VO5 square pyramids with elongated bonds of ~ 0.190 nm to the pyramidal base are found for the 50V2O5–50P2O5 glass. These weaker V–O bonds are balanced in V–O–P bridges by overbonded P–O bonds. The V(IV) sites, which account for 19.7% and 35.2% of the total V sites in the 73V2O5–27P2O5 and 50V2O5–50P2O5 glasses, respectively, form similar pyramids in agreement with the structure of crystalline (VO)2P2O7. The short-range structure of v-V2O5 and the 73V2O5-27P2O5 glass is formed of mixtures of VO5 and VO4 pyramids. A significant amount of V···O distances > 0.22 nm found for all glasses belong either to linkages V=O···V or to three-coordinated O sites.  相似文献   

16.
Influence of single fluxes (10 wt.% B2O3), bi-component fluxes (4 wt.% B2O3 + 6 wt.% Na3AlF6), and complex fluxes (4 wt.% B2O3 + 4 wt.% Na3AlF6 + 2 wt.% Na2O) on the thermal kinetic parameters, microstructure, flexural strength and coefficient of thermal expansion (CTE) of Li2O–Al2O3–4SiO2 (LAS) glass–ceramics was investigated through differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscope (SEM). The results showed that complex fluxes could efficiently decrease transition temperature (Tg) and crystallization temperature (Tp), and accelerate the formation of needle-like β-spodumene crystals which benefit high flexural strength. The homogeneous LAS glass–ceramic (sample C3) which has a high strength of 132.4 MPa and low CTE (100–650 °C) of 2.74 × 10? 6/°C is obtained by doping of the initial LAS glass by complex fluxes of 4 wt.% B2O3, 4 wt.% Na3AlF6, and 2 wt.% Na2O, nucleating at 630 °C/120 min and then crystallized at 780 °C/120 min. It is worthy of further investigation as a bonder of diamond composite material due to its outstanding prosperities.  相似文献   

17.
Porous phosphate-based glass ceramics prepared by the sol–gel method were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential thermal analysis (DSC). The 48CaO–45P2O5–2ZnO–5Na2O glassy system can remain fully amorphous up to 550 °C. After heat treated at 650 °C, the obtained porous bodies consisted of dense struts and macropores where β-Ca2P2O7 and Na2CaP2O7 phases crystallized from the glass matrix. When treated at 750 °C, Ca4P6O19 and NaZn(PO3)3 precipitated homogeneously as new phases among the residual glass matrix. The material was assessed by soaking samples in phosphate-based buffer solution (PBS) solution to determine the solubility and observe apatite formation.  相似文献   

18.
《Journal of Non》1999,243(2-3):251-267
Glasses in a wide range of compositions in the ternary system xLi2SO4yLi2O–zP2O5 where x ranges from 0 to 30 mol%, y ranges from 35 to 55 mol% and z ranges from 25 to 50 mol% have been prepared and their properties measured using infra-red, Raman, and 31P magic angle spinning nuclear magnetic resonance spectroscopic techniques. We conclude that a random close packing of phosphate and sulphate ions which also leads to formation of connected voids in the structure is consistent with our data. There is also evidence for formation of condensed sulphate–phosphate species in the liquid which may be retained in the glass structure.  相似文献   

19.
A glass with the composition of 35Na2O–24Fe2O3–20B2O3–20SiO2–1ZnO (mol%) was melted, quenched, using a twin roller technique, and subsequently heat treated in the range 485–750 °C for 1–2 h. This led to the crystallization of magnetite as the sole or the major crystalline phase.Heat treatment at lower temperatures resulted in the crystallization of magnetite crystals 7–20 nm in diameter, whereas heat treatment at higher temperatures produced higher quantities of magnetite and much larger crystals. The room temperature magnetization and coercive force values were in the range of 6–57 emu g? 1 and 0–120 Oe, respectively for the heat treated glasses.  相似文献   

20.
Regularities of phase transformations in glasses of the Li2O–Al2O3–SiO2–TiO2 system doped with up to 2.5 mol% of alkali- and divalent metal oxides were studied by X-ray diffraction analysis, Raman scattering and optical spectroscopy. Ni(II) ions were used as spectral probes of phase transformations because Ni(II)-ions enter the inhomogeneous regions formed during the phase separation and crystallization, and their absorption spectra change with heat-treatment temperature reflecting formation of aluminotitanate amorphous regions, spinel nanosized crystals and β-quartz solid solutions, consequently.It was demonstrated that the technological additives do not change the sequence of the phases' formation but accelerate the liquid phase separation and crystallization. Addition of MgO and ZnO leads to increasing the temperature range of spinel precipitation. Addition of CaO, BaO and PbO results in increasing the light scattering of prepared glass-ceramics.In selection of the technological additives for decreasing the melting temperature of glass-ceramics for optical and photonic applications the influence of the additives on the structure and optical properties of the prepared material should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号