首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The stretched exponential luminescence decay observed at temperatures lower than 20 K transits to the power law decay due to the electron-hopping at localized band tail states near 60 K in the hydrogenated amorphous silicon (a-Si:H). The luminescence decay at 4.2 K in a-Si:H is quite similar to that of Si-nanoparticles in the porous Si (p-Si). It is explained from the comparison with p-Si that the slow luminescence of the life time of ~ 1 ms is due to the recombination of excitonic electron–hole pairs at the spin triplet state quantum-confined in the hydrogen-free Si nanostructure in a-Si:H. The fast luminescence of the life time of ~ 1 μs is due to the recombination of the pairs at the spin-singlet state and the life time is explained as due to the indirect optical transition.  相似文献   

2.
《Journal of Non》2006,352(28-29):3002-3008
The accumulation of radiation-induced defects under non-destructive X-ray and destructive cathodoexcitation was studied in pure silica KS-4V glasses possessing an absorption band at 7.6 eV. The correspondence between the existence of this band and the creation of the E′-center by radiation was checked. Detection of induced defects was accomplished by measurement of the luminescence during irradiation, post irradiation afterglow or phosphorescence, induced optical absorption, and thermally stimulated luminescence. In all samples, these observed phenomena associated with charge trapping and recombination on the oxygen-deficient luminescence center. Others centers of luminescence were not significant contributors. In some samples, the intensity of the 7.6 eV absorption band was deliberately increased by treatment in hydrogen at 1200 C for 100 h. The intensity of luminescence in hydrogen-treated samples was smaller because of the known quenching effect of hydrogen on the luminescence of oxygen-deficient centers. The optical absorption method does not reveal an induced absorption band for the E′-center in the hydrogen-free samples with different levels of oxygen deficiency. Therefore, we did not detect the transformation of the defect responsible for the 7.6 eV absorption band or the ODC(I) defect into the E′-center. In the hydrogen-treated sample, the absorption of the E′-center was detected. The E′-centers creation in the hydrogen-treated sample was associated with precursors created by hydrogen treatment (≡Si–O–H and ≡Si–H) in the glass network. The destructive e-beam irradiation reveals an increase with dose of the ODC luminescence intensity in the sample exhibiting a small 7.6 eV band. That means that the corresponding luminescence centers are created. Optical absorption measurements in that case reveal the presence of E′-centers and a broad band at 7.6 eV. A compaction of the irradiated volume was detected. Therefore, we conclude that the E′-center is produced by heavy damage to the glass network or by the presence of precursors.  相似文献   

3.
The use of beryllium as an acceptor at high doping levels in (1 1 0)GaAs-based heterostructures is found to be deleterious to the structural and optical properties of these epi-layers. This may limit the use of beryllium as a p-type dopant on the (1 1 0) surface. Because silicon is amphoteric on the (1 1 0), it can be used as an alternative p-type dopant, in addition to its traditional role as an n-type dopant. Transmission electron microscopy, optical absorption, and luminescence data indicate that high quality multiple quantum well structures with p-type GaAs buffer layers doped with silicon, rather than beryllium, can be grown.  相似文献   

4.
《Journal of Non》2006,352(32-35):3618-3623
Theoretical and experimental studies of the spatial phonon confinement in ternary CdSxSe1−x nanocrystals embedded in a glass matrix formed by the composites (40)SiO2−(30)Na2CO3–(29)B2O3–(1)Al2O3 (mol%) + [(2)CdO + (2)S + (2)Se] (wt%) were carried out. From the analysis of the surface phonon modes, the theoretical procedure has allowed the determination of the geometrical characteristics of the nanocrystals. The calculated frequencies were compared with the experimental values obtained from the Raman spectra of CdSxSe1−x nanocrystals grown under different thermal treatments. A good correlation between the experimental and calculated CdS-like and CdSe-like surface optical modes was observed. The Raman selection rules and their connection with the nature of the surface optical phonons is discussed in order to use Raman spectroscopy as a probe to determine the composition x and the geometrical shape of the semiconductor nanocrystals.  相似文献   

5.
Silicon nanocrystals (Si-NCs) with different sizes embedded in SiO2 matrix were synthesized by phase separation and thermal crystallization of SiOx/SiO2 supperlattice approach. The optical constants and band gap expansion of Si-NCs have been investigated by spectroscopic ellipsometry, based on the Maxwell–Garnett effective medium approximation and the Forouhi–Bloomer optical dispersion model. Similar spectra shapes but smaller values of Si-NCs optical constants with respect to bulk crystalline Si is observed. With the size of Si-NCs decreasing from 6 nm to 2 nm, the band gap increases from 1.64 eV to 2.56 eV. The band gap expansion, as compared to bulk crystalline Si, which agrees with the prediction of first-principles calculations based on quantum confinement effect, is presented in this paper.  相似文献   

6.
The crystallization behavior of 30Na2O–25Nb2O5–(45 ? x) SiO2–xAlO1.5 (x = 0, 2.5, and 5) (mol%) glasses was examined and the effect of Al2O3 addition on the formation of perovskite-type NaNbO3 crystals was clarified. It is found from X-ray diffraction analyses and transmission electron microscope observations that NaNbO3 nanocrystals are formed in all glasses and the size of NaNbO3 crystals decreases with the substitution of Al2O3 for SiO2. A crystallized (heat-treated at 684 °C for 5 h) glass with x = 5, which contains NaNbO3 nanocrystals with an average size of 50 nm, shows good optical transparency in the wavelength region of 500–2000 nm and a small hysteresis loop in the polarization–electric field curve. The lines containing NaNbO3 crystals were patterned on the surface of NiO-doped glass with x = 5 by irradiations (power: 1.3–1.4 W, scanning speed: 10 μm/s) of Yb:YVO4 fiber laser (wavelength: 1080 nm). The formation mechanism of NaNbO3 nanocrystals in aluminosilicate glasses was also discussed.  相似文献   

7.
Confocal microscopy luminescence measurements were applied to study the X-ray radiation response of Er/Yb-doped optical fibers in connection with H2 pre-loading and with the addition of another lanthanide element (Cerium) in the core composition. Laser excitations at 488 nm and 325 nm allow deriving the emission and absorption pattern of Er3+, the latter derived from the dips appearing in a wide luminescence band related to defects in silica. We found that the luminescence spectrum of the X-irradiated Er/Yb-doped core fiber evidences an increase in the emission intensity around 520 and 660 nm; in contrast, no changes are induced by radiation neither after H2 pre-loading nor when the Cerium is added to the core composition. Both treatments reduce the generation of defects in the Er-doped fibers thus providing hardness in the radiative environment.  相似文献   

8.
Main luminescence of α-quartz crystal doped with germanium results from the luminescence of a self-trapped exciton (STE) near germanium. In as grown Ge-doped α-quartz crystal, the luminescence associated with the twofold coordinated Ge center (GeODC) in amorphous silica glass doped with germanium, was never observed. In this work, we performed experiments to investigate if a GeODC like luminescence could appear after a γ-irradiation of a Ge-doped α-quartz crystal. The answer is positive: under excitation with pulsed light of an ArF laser (193 nm): a new luminescence with two bands — a blue one associated to a time constant of about 100 μs appears and another one with faster decay of ~ 1.5 ns appears in the ultraviolet part of the spectrum under the same excitation. This last emission has similar characteristics as the GeODC luminescence of silica glass. However, clear differences exist between the radiation-induced center associated with this luminescence and the GeODC. The excitation with a KrF laser does not provide emission with a decay time constant of about 100 μs but provides blue luminescence with a faster decay of about 4 μs. The pulses of the ArF laser also excite this component of decay for the blue band. We attribute this emission to various types of γ-ray created centers in radiation damaged areas of the Ge-doped crystal. Under excitation with an F2 excimer laser (157 nm), the luminescence of STE near Ge remains in the irradiated sample.  相似文献   

9.
Reduction of Eu3+  Eu2+ and luminescence of europium (Eu) ions in glass ceramics containing SrF2 nanocrystals have been investigated. The formation of SrF2 nanocrystals in glass ceramics was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Blue luminescence of the Eu2+ ions was observed in the Eu doped glass ceramics which were prepared by the heat treatment of the glass in air atmosphere. The double-exponential decay curves of 5D0 state of Eu3+ in the Eu doped glass ceramics indicated that there were two different surroundings of the Eu ions in the glass ceramics.  相似文献   

10.
A.N. Trukhin  K.M. Golant  J. Teteris 《Journal of Non》2012,358(12-13):1538-1544
Optical absorption and photoluminescence of Ge-doped silica films fabricated by the surface-plasma chemical vapor deposition (SPCVD) are studied in the 2–8 eV spectral band. The deposited on silica substrate films of about 10 μm in thickness are composed as x·GeO2-(1-x)·SiO2 with x ranging from 0.02 to 1. It is found that all as‐deposited films do not luminesce under the excitation by a KrF (5 eV) excimer laser, thus indicating lack of oxygen deficient centers (ODCs) in them. After subsequent fusion of silicon containing (x < 1) films by a scanning focused CO2 laser beam absorption band centered at 5 eV as well as two luminescence bands centered at blue (3.1 eV) and UV (4.3 eV) wavelengths arise, highlighting the formation of the ODCs. The excitation of unfused SPCVD films by an ArF (6.4 eV) excimer laser yields a luminescence spectrum with two bands typical for the ODCs, but with a faster decay kinetics. Intensities of these bands grow up with samples cooling down to a temperature of 80–60 K. Unfused films excited by the ArF laser also demonstrate luminescence due to recombination of a trapped charge resulted from the excitation of localized electron states of the glass network. In the unfused GeO2 film luminescence related to a self-trapped exciton (STE) typical for GeO2 crystals with α-quartz structure is observed. The observed STE luminescence can be indicative of the crystalline fraction availability in the film. Whereas GeO2 crystals are known as not containing twofold coordinated germanium, a polycrystalline inclusion in the SPCVD GeO2 film serves as a factor explaining the absence of any spectroscopic manifestation of this type of defects in it even after fusion. On the other hand, lack of STE luminescence in other unfused films with x < 1 testifies truly amorphous state of the matter in them.  相似文献   

11.
The luminescence of silica glass, prepared by plasma chemical vapor deposition (PCVD) and quartz glass of type IV (trade mark KS-4V) methods, were studied while irradiated with pulses of ArF laser (193 nm) light in the range of sample temperatures between 10 and 300 K. The samples contain less than 0.1 ppm metallic and hydroxyl impurities. The samples synthesized by PCVD were of two kinds. The first one (amorphous) was as-deposited from plasma at a substrate tube temperature of ~1200 °C. The second one (fused) was prepared from the first by the tube collapsing with an external burner. In this process, a section of the substrate tube with the deposited glass was installed in a lathe and processed at a temperature of ~2100 °C during ~20 min until the tube was transformed to a rod. After such processing, the rod was cooled down to room temperature in air at an average rate of about 400 °C per min. The only observed luminescence possesses two broad bands, with not well defined position, one at 2.6–2.9 eV (a blue band) and another in the range of 4.4 eV (an UV band). There is a correspondence in luminescence properties between KS-4V silica and fused PCVD silica. Those bands have been attributed to oxygen deficient centers (ODC). No luminescence is observed in amorphous PCVD silica under irradiation with 193 nm laser light. So, formation of the sample by melting at least stimulates formation of ODCs at 193 nm. The blue band decays obeys to power law ~t?1 and is detected in the range of time 10 ns to 300 μs. The UV band possesses a fast, practically repeating excitation pulse, and a slow component (~30 μs). The obtained new kinetics data are compared with known in literature for lone twofold-coordinated silicon having exponential decay for the blue band equal to 10 ms and 4.5 ns for the UV band. That shows the blue band of new studied samples under ArF laser possesses decay component faster and the UV band slower than that of the twofold-coordinated silicon center. This corresponds to the recombination process of luminescence excitation by laser. We propose a model of the processes as charge separation under excitation with creation of a nearest self-trapped hole and electron trapped on the twofold-coordinated silicon, modified by its surrounding atoms or ions. This pair is recombining then with luminescence.  相似文献   

12.
Chalcogenide bulk glasses Ge20Se80?xTex for x  (0, 10) have been prepared by systematic replacement of Se by Te. Selected glasses have been doped with Er and Pr, and all systems have been characterized by transmission spectroscopy, measurements of dc electrical conductivity and low-temperature photoluminescence. Absorption coefficient has been derived from measured transmittance and estimated reflectance. Both absorption and low-temperature photoluminescence spectra reveal shifts of absorption edge and/or dominant luminescence band to longer wavelength due to Te  Se substitution. Arrhenius plots of dc electrical conductivity, in the temperature range 300–450 K, are characterized by activation energies roughly equal to the half of the optical gap. Arrhenius plots for temperatures below 300 K yield much lower activation energies. The dominant low-temperature luminescence band centered at about half the band gap energy starts to quench above 200 K and a new band appears at 900 nm. The band at 900 nm, due to band to band transitions, overwhelms the spectra at room temperature. Systems doped with Er exhibit a strong luminescence due to 4I13/2  I15/2 transition of Er3+ ion at 1539 nm, and Pr doped samples exhibit a relatively weak luminescence peak at 1590 nm, which we tentatively assign to 3F3  3H4 transition of Pr3+ ion.  相似文献   

13.
Transparent glass-ceramics containing SrF2 nanocrystals were fabricated by melt-quenching and subsequent heating of glass with a composition of 50SiO2–10Al2O3–20ZnF2–20SrF2. X-ray diffractometry, transmission electron microscopy, and energy dispersive spectroscopy were used to investigated the microstructure of the SrF2 glass-ceramics. Results show that SrF2 nanocrystals were homogeneously precipitated among the aluminosilicate glass matrix, and the mean size of the SrF2 nanocrystals was about 20 nm, and Eu3+ ions partition mainly into the precipitated SrF2 nanocrystals after crystallization. The glass-ceramics exhibited intense red emission corresponding to the 5D0  7FJ (J = 0–4) transitions of Eu3+ ions under 393 nm excitation. A significant Eu3+ luminescence enhancement by a factor of about nine times was observed after crystallization. Besides, the obvious stark splitting emissions, the low forced electric dipole 5D0  7 F2 transition, and the long decay lifetimes of Eu3+ ions also revealed the partition of Eu3+ ions into low phonon energy SrF2 nanocrystals. Our results indicate the SrF2 based fluorosilicate glass-ceramics is an excellent host for trivalent lanthanide ion doping and may find applications in photonics.  相似文献   

14.
Materials made of tin oxide nanocrystals homogeneously dispersed into a silica glass matrix have been elaborated through sol–gel processing. Addition of strong acids was used to control the hydrolysis–condensation in tin and silicon alkoxides mixed alcoholic solutions. Fourier transform infrared spectroscopy (FTIR) and Small angle X-ray scattering (SAXS) measurements show that the introduction of HCl allows to synthesize gels containing up to 50% of tin oxide precursor without significant modification of the pure silica gel network. Thermal treatments of slowly dried bulk gels induce the crystallization of tin oxide nanoparticles. After firing at 1000 °C, dense materials containing tin oxide nanocrystals (with a mean diameter close to 1–2 nm) are obtained. The crystal size distribution was estimated by X-ray diffraction line profile analysis. The narrowness of this distribution makes these materials interesting for optical applications.  相似文献   

15.
Broadband infrared luminescence is observed in various Bi-doped oxide glasses prepared by conventional melting-quenching technique. The absorption spectrum of the Bi-doped germanium oxide glass consists of five broad peaks at below 370, 500, 700, 800 and 1000 nm. The fluorescence spectrum exhibits a broad peak at about 1300 nm with full width at half maximum (FWHM) of more than 300 nm when excited by an 808 nm laser diode. The fluorescence lifetime at room temperature decreases with increasing Bi2O3 concentration. Influence of the glass composition and melting atmosphere on the fluorescence lifetime and luminescent intensity is investigated. The mechanism of the broadband infrared luminescence is suggested. The product of stimulated emission cross-section and lifetime of the Bi-doped aluminophosphate glass is about 5.0 × 10?24 cm2 s. The glasses might be promising for applications in broadband optical fiber amplifiers and tunable lasers.  相似文献   

16.
Thermal stability and changes of both the average size of Al nanocrystals and their crystallised volume fraction formed in a series of the amorphous Al–(Ni,Co,Fe)–(Gd,Y,Tb) alloys as well as of α-Fe(Si) in the Fe73.5Si13.5B9Cu1Nb3 alloy under isothermal conditions have been experimentally studied by a combination of X-ray diffraction (XRD) analysis, differential scanning calorimetry (DSC) and electrical resistance measurements. The experimental data have been fitted with the analytical models describing the diffusion-limited growth of nanocrystals and nanocrystallisation kinetics accounting for impingement of diffusion fields and the values of the effective diffusivity governing this process have been estimated. The obtained values of the diffusivity in Al-based amorphous alloys follow the Arrhenius-type dependencies with correlation between the pre-exponential factors and the activation energies somewhat different from that found for impurity diffusion coefficients in amorphous alloys. It has been established that at the onset crystallisation temperatures varying from 453 to 778 K, the values of the effective diffusivity in the investigated amorphous alloys are in the narrow range of 1.7–4.7 × 10? 20 m2 s? 1, which indicates a crucial role of the effective diffusivity for the thermal stability of nanocrystals forming amorphous alloys and the possible reason for this is discussed.  相似文献   

17.
Chalcohalide glass with a composition of 65GeS2–25Ga2S3–10CsI (in mol%) doped with 0.6 wt% Tm3+ ions was prepared by conventional melt–quench method. By heat treating the precursor glass at 20 °C above its glass transition temperature Tg for different durations, IR transparent glass ceramics were obtained. X-ray diffraction (XRD) and scanning electron microscope (SEM) showed that Ga2S3 crystallites were precipitated after heat treatment and their grain sizes were in nano-scale and increased with the elongation of heat treated time. Mid-IR luminescence properties of the glass and transparent glass ceramic samples were investigated. The emissions at 2.3 and 3.8 μm corresponding to optical transitions of 3H4  3H5 and 3H5  3F4 of Tm3+ ions were significantly enhanced by the presence of Ga2S3 nanocrystals and reached a maximum after 8 hours treatment.  相似文献   

18.
《Journal of Non》2006,352(32-35):3628-3632
This paper presents the optical characterization of Nd3+ lead silicate glasses (SiO2–Na2CO3–PbO–ZnO), synthesized by means of the fusion method. Absorption, luminescence, lifetime and Raman spectroscopy measurements were performed in order to determine the radiative properties of the glasses. The near infrared luminescence exhibited the typical Nd3+ bands, particularly the band at 1060 nm (4F3/2  4I11/2). The calculated branching ratios for the 4F3/2 level are: β (9/2) = 35%, β (11/2) = 55%, β(13/2) = 9.5% and β (15/2) = 0.5%. The estimated quantum efficiency was about 90%, based on comparison with the Judd Ofelt theory and experimental lifetime measurements.  相似文献   

19.
《Journal of Non》2006,352(32-35):3633-3635
PbS nanocrystals embedded in glass matrix (SiO2–Na2CO3–Al2O3–B2O3) were synthesized by means of the fusion method using four different PbS concentrations (0.05, 0.1, 1.5, and 2.0 wt%). Thermal treatment was performed at 550 °C with annealing time of 6 h. Measurements of optical absorption and photoluminescence were carried out as a function of PbS concentration. It is argued that, with the same thermal treatment and annealing time, the formation of large nanocrystals becomes easier as the PbS concentration increases. Optical absorption spectra showed that the band-gap energy increases as the PbS concentration decreases, making this relationship important in the obtainment of a desired band-gap in PbS-doped glasses.  相似文献   

20.
Z. Pan  G. Sekar  R. Akrobetu  R. Mu  S.H. Morgan 《Journal of Non》2012,358(15):1814-1817
Tb3 + and Yb3 + co-doped oxyfluoride glasses were fabricated in a lithium–lanthanum–aluminosilicate matrix (LLAS) by a melt-quench technique. Glass-ceramics were obtained by appropriate heat treatment of the as-prepared glasses. Visible to near-infrared down-conversion luminescence was studied for glass and glass-ceramic samples with different Yb3 + concentrations. It has been found that the luminescence intensity at 940–1020 nm from Yb3 + ions increases while the emission lifetime of Tb3 + ions decreases in the glass-ceramic compared to that in the as-prepared glass, which indicates that the energy transfer efficiency increases in the glass-ceramics compared to that in the as-prepared glass. The down-conversion luminescence also increased for increasing Yb3 + concentration from 1 mol% to 2 mol%, but decreased for the sample with a high Yb3 + co-doping concentration of 8 mol%, which is attributed to the concentration quenching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号