首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mixed ruthenium(II) complexes trans-[RuCl2(PPh3)2(bipy)] (1), trans-[RuCl2(PPh3)2(Me2bipy)](2), cis-[RuCl2(dcype)(bipy)](3), cis-[RuCl2(dcype)(Me2bipy)](4) (PPh3 = triphenylphosphine, dcype = 1,2-bis(dicyclohexylphosphino)ethane, bipy = 2,2′-bipyridine, Me2bipy = 4,4′-dimethyl-2,2′-bipyridine) were used as precursors to synthesize the associated vinylidene complexes. The complexes [RuCl(CCHPh)(PPh3)2(bipy)]PF6 (5), [RuCl(CCHPh)(PPh3)2(Me2bipy)]PF6 (6), [RuCl(CCHPh)(dcype)(bipy)]PF6 (7), [RuCl(CCHPh)(dcype)(bipy)]PF6 (8) were characterized and their spectral, electrochemical, photochemical and photophysical properties were examined. The emission assigned to the π–π1 excited state from the vinylidene ligand is irradiation wavelength (340, 400, 430 nm) and solvent (CH2Cl2, CH3CN, EtOH/MeOH) dependent. The cyclic voltammograms of (6) and (7) show a reversible metal oxidation peak and two successive ligand reductions in the +1.5-(−0.64) V range. The reduction of the vinylidene leads to the formation of the acetylide complex, but due the hydrogen abstraction the process is irreversible. The studies described here suggest that for practical applications such as functional materials, nonlinear optics, building blocks and supramolecular photochemistry.  相似文献   

2.
The photophysical behavior of a series of mono- and trimetallic Ru(II) and mixed Ru(II)/Fe(II) bis-terpyridyl complexes was examined. The complexes have bridging terpyridyl ligands linked by phenylene-vinylene substituents on the terpyridyl. For the complexes bridged by a single phenylene-vinylene, the lowest-energy excited state is metal-to-ligand charge transfer (MLCT), and excited-state decay is on the 1-10 ns time scale. The complexes with two phenylene-vinylene groups have thermally equilibrated excited states that are localized on the phenylene-vinylene bridge and have much longer lifetimes (>200 ns). Remarkably, the trimetallic complex having an Fe(II) terpyridyl center also has a long-lived excited state, despite the fact that low-energy iron-localized excited states exist on the complex.  相似文献   

3.
Tocher DA  Pal PK  Datta D 《Inorganic chemistry》2003,42(24):7704-7706
[Ru(1,10-phenanthroline)(2)(4,4,4',4'-tetramethyl-2,2'-bisoxazoline)](PF(6))(2).H(2)O (1) shows a (3)MC emission in CH(3)CN and CH(3)OH at room temperature around 590 nm with radiative lifetimes of 1.22 x 10(-4) and 1.40 x 10(-4) s, respectively. The X-ray crystal structure of 1 has been determined.  相似文献   

4.
Lai SW  Chan QK  Zhu N  Che CM 《Inorganic chemistry》2007,46(26):11003-11016
A series of cis-dicyanoosmium(II) complexes [Os(PPh3)2(CN)2(N intersectionN)] (N intersectionN = Ph2phen (2a), bpy (2b), phen (2c), Ph2bpy (2d), tBu2bpy (2e)) and [Os(DMSO)2(CN)2(N intersectionN)] (3a-3e, N intersectionN = Br2phen (3f), Clphen (3g)), were synthesized and their spectroscopic and photophysical properties were examined, and [Os(PMe3)2(CN)2(phen)] (4) with axial PMe3 ligands was similarly prepared. The molecular structures of 2a, 2c, [2c.Zn(NO3)2]infinity, 2d, 2e, 3b, 3d, 3e, and 4 were determined by X-ray crystallographic analyses. The two CN ligands are cis to each other with mean Os-C bond distance of 2.0 A. The two PR3 (R = Ph, Me) or DMSO ligands are trans to each other with P/S-Os-P/S angles of approximately 177 degrees . The UV-vis absorption spectra of 2a-2e display an intense absorption band at 268-315 nm (epsilon = approximately (1.54-4.82) x 104 M-1 cm-1) that are attributed to pi --> pi*(N intersection N) and/or pi --> pi*(PPh3) transitions. The moderately intense absorption bands with lambdamax at 387-460 nm (epsilon = approximately (2.4-11.3) x 103 M(-1) cm(-1)) are attributed to a 1MLCT transition. A weak, broad absorption at 487-600 nm (epsilon = approximately 390-1900 M(-1) cm(-1)) is assigned to a 3MLCT transition. Excitation of 2a-2e in dichloromethane at 420 nm gives an emission with peak maximum at 654-703 nm and lifetime of 0.16-0.67 micros. The emission energies, lifetimes, and quantum yields show solvatochromic responses, and plots of numax, tau, and Phi, respectively, versus ET (solvent polarity parameter) show linear correlations, indicating that the emission is sensitive to the local environment. The broad structureless solid-state emission of 2a-2e at 298 (lambdamax 622-707 nm) and 77 (lambdamax 602-675 nm) K are assigned to 3MLCT excited states. The 77 K MeOH/EtOH (1:4) glassy solutions of 2a-2e also exhibit 3MLCT emissions with lambdamax = 560-585 nm. The 1MLCT absorption and 3MLCT emission of 3a-3g occur at lambdamax = 332-390 nm and 553-644 nm, respectively. In the presence of Zn(NO3)2, both the 1MLCT absorption and 3MLCT emission of 2c in acetonitrile blue-shift from 397 to 341 nm and 651 to 531 nm, respectively. The enhancement of emission intensity (I/Io) of 2e at 531 nm reached a maximum of approximately 810 upon the addition of two equivs of Zn(NO3)2. The crystallographic and spectroscopic evidence suggests that 2c undergoes binding of Zn2+ ions via the cyano moieties.  相似文献   

5.
Cationic diimine Ru(II) complexes were synthesized and tested as catalysts for the formation of cyclic organic carbonates from CO2 and liquid epoxides (propylene oxide, epichlorohydrine, 1,2‐epoxybutane and styrene oxide) which served as both reactant and solvent. The reaction rates not only depended on the type of ligand, but also on reaction conditions such as temperature, pressure, base, the epoxide substrates and the use of an additional solvent. Reaction rates in terms of turnover frequencies up to 4050 molproduct molcat.?1 h?1 at 99% selectivity were achieved by optimizing the diimine ligand as well as the reaction temperature and CO2 pressure. Consistent with CV measurements, the electron donating group on the p‐position of the aryl ring accelerated the reaction rate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The catalytic properties of a series of Fe(II) diimine complexes (diimine=N,N′-o-phenylenebis(salicylideneaminato), N,N′-ethylenebis(salicylideneaminato), N,N′-o-phenylenebisbenzal, N,N′-ethylenebisbenzal) in combination with ethylaluminoxane (EAO) for ethylene oligomerization have been investigated. Treatment of the iron(II) complexes with EAO in toluene generates active catalytic systems in situ that oligomerize ethylene to low-carbon olefins. The effects of reaction temperature, ratios of Al/Fe and reaction periods on catalytic activity and product distribution have been studied. The activity of complex FeCl2(PhCH=o-NC6H4N=CHPh) with EAO at 200°C is 1.35×105 g oligomers/mol Fe·h, and the selectivity of C4–10 olefins is 84.8%.  相似文献   

7.
The synthesis and the experimental and theoretical characterization of ruthenium hydride complexes containing phosphorus and polypyridine ligands [RuH(CO)(N-N)(PPh3)2]+ with N-N = dppz 1, dppz-CH32 (2.1 isomer), dppz-Cl 3 (3.1 isomer), ppl 4, and 2,2′-biquinoline 5, (where dppz = dipyrido[3,2-a:2′,3′-c]phenazine), are presented. 1H NMR, 31P NMR, 13C NMR, IR-FT, UV-Vis and elemental analysis are used to characterize the complexes. Optimized molecular geometries in the gas phase at the B3LYP/LACVP(d,p) level showed a distorted octahedral structure for ruthenium, the phosphine ligands are localized in a trans position, while the polypyridine ligand, which in all the cases is planar except in 5, adopt a trans position relative to the carbon monoxide and hydride ligands. The theoretical absorption spectra (one hundred excited states) were calculated for the seven complexes by the time dependent density functional theory (TD-DFT) in the gas phase. They predicted very well the UV-Vis spectra. It was possible to identify the character of each electronic transition and the fragments of the complexes involved in it. Theoretical evidence of the substituent effect in the polypyridine ligand and of the ligand effect (dppz, biq, ppl) was found, displayed mainly in the longer wavelength band. The theoretical results showed that the properties of these complexes can be tuned with changes localized in the polypyridine ligand covalently bonded to ruthenium.  相似文献   

8.
Several cis-RuX2((R)-BINAP)(diimine) complexes have been prepared, and many of these exhibit an unusual temperature-dependent, accidental degeneracy of the 31P shifts in their solution NMR spectra.  相似文献   

9.
杜旺明  王清福  余正坤 《催化学报》2013,34(7):1373-1377
合成了一种基于吡啶骨架含有苯并咪唑和手性咪唑啉基团的三齿NNN配体及其二价钌(II)配合物,通过核磁共振波谱学和X射线单晶晶体结构测定确认了钌(II)配合物的分子结构.这些配合物在室温下催化酮的氢转移反应,表现出了优异的催化活性,收率和ee值最高分别可达99%和97%.  相似文献   

10.
A comprehensive photophysical investigation has been carried out on a series of eight complexes of the type (diimine)Pt(-C=C-Ar)(2), where diimine is a series of 2,2'-bipyridine (bpy) ligands and -C=C-Ar is a series of substituted aryl acetylide ligands. In one series of complexes, the energy of the Pt --> bpy metal-to-ligand charge transfer (MLCT) excited state is varied by changing the substituents on the 4,4'- and/or the 5,5'-positions of the bpy ligand. In a second series of complexes the electronic demand of the aryl acetylide ligand is varied by changing the para substituent (X) on the aryl ring (X = -CF(3), -CH(3), -OCH(3), and -N(CH(3))(2)). The effect of variation of the substituents on the excited states of the complexes has been assessed by examining their UV-visible absorption, variable-temperature photoluminescence, transient absorption, and time-resolved infrared spectroscopy. In addition, the nonradiative decay rates of the series of complexes are subjected to a quantitative energy gap law analysis. The results of this study reveal that in most cases the photophysics of the complexes is dominated by the energetically low lying Pt --> bpy (3)MLCT state. Some of the complexes also feature a low-lying intraligand (IL) (3)pi,pi excited state that is derived from transitions between pi- and pi-type orbitals localized largely on the aryl acetylide ligands. The involvement of the IL (3)pi,pi state in the photophysics of some of the complexes is signaled by unusual features in the transient absorption, time-resolved infrared, and photoluminescence spectra and in the excited-state decay kinetics. The time-resolved infrared difference spectroscopy indicates that Pt --> bpy MLCT excitation induces a +25 to + 35 cm(-)(1) shift in the frequency of the C=C stretching band. This is the first study to report the effect of MLCT excitation on the vibrational frequency of an acetylide ligand.  相似文献   

11.
In this article, we report the fluorescence emission of Disperse Red 1 in solution at room temperature and pumping at 532 nm with a 25 mW diode laser. We have measured its fluorescence quantum yield in methanol, ethylene glycol, glycerol, and phenol obtaining values as high as 10(-3) in the aliphatic alcohols. The excitation spectra of Disperse Red 1 in all four solvents as well as its excitation anisotropy in glycerol are presented. Applying a Gaussian decomposition method to the absorption spectra along with the support from the excitation spectra, the positions of the different transitions in this pseudo-stilbene azobenzene dye were determined. Solvatochromic and isomerization constraint effects are discussed. Calculations using density functional theory at TD-B3LYP/6-31G*//HF/6-31G* level were performed to interpret the experimental observations.  相似文献   

12.
Dual emission is observed from a family of simple acetylene-linked dinuclear RuII complexes, where two MLCT excited states coexist at room temperature and in fluid solution. This unique behavior is attributed to a specific substitution pattern on the bridging ligand and provides the opportunity to investigate the structural and electronic features that result in decoupling of standard nonradiative decay pathways.  相似文献   

13.
The unique behavior of a new Ru(II) diimine complex, Ru(bpy)(2)(L)(2+) (where L is 4-methyl-4'-[p-(dimethyl- amino)-alpha-styryl]-2,2'-bipyridine, bpy is 2,2'-bipyridine), was studied in detail. Due to the strong electron donating property of the amino group, an ILCT (intraligand charge transfer) state is involved either in the absorption spectra or in the time-resolved emission spectra. Dual emission based on (3)MLCT and (3)ILCT states was observed at room temperature for the first time via a time-resolved technique in Ru(II) diimine complexes.  相似文献   

14.
Yang CH  Li SW  Chi Y  Cheng YM  Yeh YS  Chou PT  Lee GH  Wang CH  Shu CF 《Inorganic chemistry》2005,44(22):7770-7780
A series of heteroleptic Ir(III) metal complexes 1-3 bearing two N-phenyl-substituted pyrazoles and one 2-pyridyl pyrazole (or triazole) ligands were synthesized and characterized to attain highly efficient, room-temperature blue phosphorescence. The N-phenylpyrazole ligands, dfpzH = 1-(2,4-difluorophenyl)pyrazole, fpzH = 1-(4-fluorophenyl)pyrazole, dfmpzH = 1-(2,4-difluorophenyl)-3,5-dimethylpyrazole, and fmpzH = 1-(4-fluorophenyl)-3,5-dimethylpyrazole, show a similar reaction pattern with respect to the typical cyclometalated (C(wedge)N) chelate, which utilizes its ortho-substituted phenyl segment to link with the central Ir(III) atom, while the second 2-pyridylpyrazole (or triazole) ligand, namely, fppzH = 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole, fptzH = 3-(trifluoromethyl)-5-(2-pyridyl)triazole, and hptzH = 3-(heptafluoropropyl)-5-(2-pyridyl)triazole, undergoes typical anionic (N--N) chelation to complete the octahedral framework. X-ray structural analyses on complexes [(dfpz)(2)Ir(fppz)] (1a) and [(fmpz)(2)Ir(hptz)] (3d) were established to confirm their molecular structures. Increases of the pipi energy gaps of the Ir(III) metal complexes were systematically achieved with two tuning strategies. One involves the substitution for one or two fluorine atoms at the N-phenyl segment or the introduction of two electron-releasing methyl substituents at the pyrazole segment of the H(C--N) ligands. Alternatively, we have applied the more electron-accepting triazolate in place of the pyrazolate segment for the third (N--N)H ligand. Our results, on the basis of steady-state, relaxation dynamics, and theoretical approaches, lead to a conclusion that, for complexes 1-3, the weakening of iridium metal-ligand bonding strength in the T(1) state plays a crucial role for the fast radiationless deactivation. For the case of [(fmpz)(2)Ir(hptz)] (3d), a thermal deactivation barrier of 4.8 kcal/mol was further deduced via temperature-dependent studies. The results provide a theoretical basis for future design and synthesis of the corresponding analogues suited to blue phosphorescent emitters.  相似文献   

15.
Absorption and emission spectra of Pt(diimine)L2 complexes (diimine = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmbpy); L = pyrazolate (pz-), 3,5-dimethylpyrazolate (dmpz-), or 3,4,5-trimethylpyrazolate (tmpz-)) have been measured. Solvent-sensitive absorption bands (370-440 nm) are attributed to spin-allowed metal-to-ligand charge-transfer (1MLCT) transitions. As solids and in 77 K glassy solution, Pt(bpy)(pz)2 and Pt(dmbpy)(pz)2 exhibit highly structured emission systems (lambda max approximately 494 nm) similar to those of the diprotonated forms of these complexes. The highly structured bands (spacings 1000-1400 cm-1) indicate that the transition originates in a diimine-centered 3(pi-->pi*) (3LL) excited state. The intense solid-state and 77 K glassy solution emissions from 3MLCT[d(Pt)-->pi*(bpy)] excited states of complexes with dmpz- and tmpz- ligands occur at longer wavelengths (lambda max = 500-610 nm), with much broader vibronic structure. These findings are consistent with increasing electron donation of the pyrazolate ligands, leading to a distinct crossover from a lowest 3LL to a 3MLCT excited state.  相似文献   

16.
Mixed ligand complexes of the type Ru(pq)(2)(PP)(2+) (pq = 2,2'-pyridylquinoline and PP = one bidentate or two monodentate phosphine ligands) have been prepared from the appropriate phosphine and Ru(pq)(2)Cl(2). The room temperature absorption spectra and low temperature (77 K) emission spectra, emission lifetimes, and quantum yields have been measured for the series of complexes and compared with those of Ru(pq)(3)(2+) and analogous Ru(bpy)(2)(PP)(2+) complexes (bpy = 2,2'-bipyridine) where possible. Emission spectra have been fit using a single mode Franck-Condon analysis. The visible absorption bands and emission bands are assigned to MLCT transitions that are blue shifted relative to Ru(pq)(3)(2+), while the emission lifetimes and quantum yields are increased. The trends in the nonradiative rate constants, k(nr), are described in terms of the energy gap, E(0), and the Huang-Rhys factor, S(M), which were obtained from the spectral fittings, and are correlated with the phosphine ligand structures.  相似文献   

17.
We wish to report the synthesis, crystal structures, spectroscopic and electrochemical properties of several new Pt(II) heteroleptic complexes containing the thiacrown, 9S3 (1,4,7-trithiacyclononane) with a series of substituted phenanthroline ligands and related diimine systems. These five ligands are 5,6-dimethyl-1,10-phenanthroline(5,6-Me2-phen), 4,7-dimethyl-1,10-phenanthroline(4,7-Me2-phen), 4,7-diphenyl-1,10-phenanthroline(4,7-Ph2-phen), 2,2′-bipyrimidine(bpm), and pyrazino[2,3-f]quinoxaline or 1,4,5,8-tetraazaphenanthrene(tap). All complexes have the general formula [Pt(9S3)(N2)](PF6)2 (N2 = diimine ligand) and form similar structures in which the Pt(II) center is surrounded by a cis arrangement of the two N donors from the diimine chelate and two sulfur atoms from the 9S3 ligand. The third 9S3 sulfur in each structure forms a longer interaction with the platinum resulting in an elongated square pyramidal structure, and this distance is sensitive to the identity of the diimine ligand. In addition, we report the synthesis, structural, electrochemical, and spectroscopic properties of related Pd(II) 9S3 complex with tap. The 195Pt NMR chemical shifts for the six Pt(II) complexes show a value near −3290 ppm, consistent with a cis-PtS2N2 coordination sphere although more electron-withdrawing ligands such as tap show resonances shifted by almost 100 ppm downfield. The physicochemical properties of the complexes generally follow the electron-donating or withdrawing properties of the phenanthroline substituents.  相似文献   

18.
Summary Molecular orbital calculations using-, the INDO method have been carried out fm the [FeL(CN)4]2 and [FeLH(CN)4] complexes, as well as for the tree ligands, with L 2 × pyridine, 1,10-phenanthroline.2,2-bipyridyl. 2,2-rimidine, 2, 3,3-bipyridazine and 4.4-bipyrimidine. Calculations of residual charge at carbon atoms in the ligand rings. correlating with relative nucleophilicity of the compounds, corresponds with observed differences of rate of reaction of the complex [FeI;]2 With nucleophiles.  相似文献   

19.
One gold(I)-substituted styrylbenzene, six digold(I) distyrylbenzenes, one tetragold distyrylbenzene, and four digold distyrylnaphthalene complexes were synthesized using base-promoted auration, alkynylation, triazolate formation, and Horner-Wadsworth-Emmons reactions. The gold(I) fragments are either σ-bonded to the aromatic system, or they are attached through an alkynyl or triazolate spacer. Product formation was monitored using (31)P{(1)H} NMR spectroscopy. Systems in which gold(I) binds to the central benzene ring or the terminal phenyl rings were designed. All of these complexes have strong ultraviolet absorptions and emit blue light. The position of the gold(I) attachment influences the luminescence efficiency. Complexes with two gold(I) fragments attached to the ends of the conjugated system have fluorescence quantum yields up to 0.94, when using 7-diethylamino-4-methylcoumarin as the emission standard. Density-functional theory calculations on three high-yielding emitters suggest that luminescence originates from the distyrylbenzene or -naphthalene bridge.  相似文献   

20.
Summary Paramagnetic [OsIIIDQ2]+ and diamagnetic [OsIIAQ2] (Q = deprotonated 8-quinolinols, D = diimines and A = azoimines) complexes were prepared and characterised by physicochemical, magnetic and spectroscopic methods. The complexes exhibit several spin-allowed and spinforbidden charge-transfer transitions in the visible region. In MeCN solution the OsN4O2 unit displays nearly reversible OsIV-OsIII and OsIII-OsII couples in the ca. -0.4 to +1.1 V range versus SCE. An anodic shift of these responses is seen in going from diimines to azoimines. The stability of metal oxidation levels is correlated on the basis of -acceptor properties of these ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号