首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Non》2007,353(13-15):1437-1440
Surface morphology and roughness of amorphous spin-coated As–S–Se chalcogenide thin films were determined using atomic force microscopy. Prepared films were coated from butylamine solutions with thicknesses d  100 nm and then annealed in a vacuum furnace at 45 °C and 90 °C for 1 h for their stabilization. The root mean square surface roughness analysis of surfaces of as-deposited spin-coated As–S–Se films indicated a very smooth film surface (with Rq values 0.42–0.45 ± 0.2 nm depending on composition). The nanoscale images of as-deposited films confirmed that surface of the films is created by domains with dimensions 20–40 nm, which corresponds to diameters of clusters found in solutions. The domain character of film surfaces gradually disappeared with increasing annealing temperature while the solvent was removed from the films. Middle-infrared transmission spectra recorded a decrease of intensities of vibration bands connected to N–H (at 3367 and 3292 cm−1) and C–H (at 2965, 2935 and 2880 cm−1) stretching vibrations. Temperature regions of solvent evaporation T = 60–90 °C and glass transformation temperatures Tg = 135–150 °C of spin-coated As–S–Se thin films were determined using a modulated differential scanning calorimetry.  相似文献   

2.
We have investigated the effect of Ar dilution on the deposition process of intrinsic nc-Si:H (hydrogenated nanocrystalline silicon) thin films used as active layers of top-gate TFTs, in order to improve the TFTs performances. The nc-Si:H films were deposited by plasma enhanced chemical vapor deposition (PECVD) at low temperature (165 °C) and the related TFTs were fabricated with a maximum process temperature of 200 °C. During the nc-Si:H films deposition, the SiH4 fraction and the total flow of the diluting gases Ar + H2 mixture was kept constant, H2 being substituted by Ar. We have pointed out the active role played by the metastable states of excited Ar atoms in both the dissociation of SiH4 and H2 by quenching reactions in the plasma. The role of the atomic hydrogen during the film deposition seems to be promoted by the addition of argon into the discharge, leading to an increase of the deposition rate by a factor of about three and an enhancement of the crystalline quality of the nc-Si:H films. This effect is maximized when the Ar fraction in the Ar + H2 gases mixture reaches 50%. The evolution with Ar addition of the carriers mobility of the related TFTs is closely connected to the evolution of the crystalline fraction of the intrinsic nc-Si:H film. Mobilities values as high as 8 cm2 V?1 s?1 are obtained at the Ar fraction of 50%. For higher Ar fractions, the fall of the mobility comes with a degradation of the IDVG transfer characteristics of the processed TFTs due to a degradation of the nc-Si:H films quality. OES measurements show that the evolution of the Hα intensity is closely connected to the evolution of the deposition rate, intrinsic films crystalline fraction and TFTs mobility, providing an interesting tool to monitor the TFTs performances.  相似文献   

3.
《Journal of Non》2006,352(9-20):906-910
Microcrystalline silicon (μc-Si) films have been deposited on polyimide, Corning glass and c-Si(0 0 1) by rf plasma-enhanced chemical vapour deposition (PECVD) using both SiF4–H2 and SiH4–H2 plasmas. The effect of substrate pre-treatment using SiF4–He and H2 plasmas on the nucleation of crystallites is investigated. Real-time laser reflectance interferometry monitoring (LRI) revealed the existence of a ‘crystalline seeding time’ that strongly impacts on the crystallite nucleation, on the structural quality of the substrate/μc-Si interface and on film microstructure. It is found that SiF4–He pre-treatment of substrates is effective in suppressing porous and amorphous interface layer at the early nucleation stage of crystallites, resulting in direct deposition of μc-Si films also on polyimide at the temperature of 120 °C.  相似文献   

4.
《Journal of Crystal Growth》2006,286(2):407-412
The copper nitride thin films were prepared on glass substrate by RF magnetron sputtering method. At pure nitrogen atmosphere, the nitrogen flow rate affects the copper nitride thin films’ structures. Only a little part of nitrogen atoms insert into the body center of Cu3N structure and parts of nitrogen atoms insert into Cu3N crystallites boundary at higher nitrogen flow rate. But the indirect optical energy gap, Eopg, decreases with increasing nitrogen flow rate. The typical value of Eopg is 1.57 eV. In a nitrogen and argon mixture atmosphere, when the nitrogen partial was less than 0.2 Pa at 50 sccm total flow rate, the (1 1 1) peak of copper nitride appears. Thermal decomposition temperature of Cu3N thin films deposited in pure nitrogen and 30 sccm flow rate was less than 300 °C. The surface morphology was smooth.  相似文献   

5.
C.Y. Lam  K.H. Wong 《Journal of Non》2008,354(35-39):4262-4266
Mn-doped cuprous oxide Cu2?xMnxO (CMO), where x = 0.03, is a p-type diluted magnetic semiconductor (DMS) with Curie temperature above room temperature [M. Wei, N. Braddon, et al., Appl. Phys. Lett. 86 (2005) 0725141; Y.L. Liu, S. Harrington, et al., Appl. Phys. Lett. 87 (2005) 222108]. We have grown CMO (x = 0.03) thin films of about 200 nm thick on n-type semiconducting (0 0 1)Nb–SrTiO3(NSTO) single crystal substrates by pulsed laser deposition. Cubic crystalline phases of CMO layers were obtained in a narrow deposition pressure window of about 20 mTorr at growth temperature of 650 °C. X-ray diffraction and TEM studies of these heterostructures reveal a cube-on-cube epitaxial relationship of [CMO]001/[NSTO]001. All the oxide p–n junctions with the size of 500 × 500 μm were fabricated by the shadow masking technique. These junctions show highly asymmetric IV characteristics. The rectification ratio at room temperature is about 103 at ±2 V. Leakage current density of 10?4 A cm?2 at ?1 V is observed. No apparent junction breakdown is recorded at reverse bias voltages down to ?5 V. From the 1/C2V plots, the forward bias turn on voltage is ~1.4 V. Clear junction current rectifying property is maintained at up to 200 °C. Our results have demonstrated that epitaxial CMO films can be fabricated on lattice matched cubic substrates. They are suitable DMS for above room temperature spintronic junction applications.  相似文献   

6.
Synthesis of multi-walled carbon nanotubes (MWCNTs) doped silica xerogel films was reported in this work. A crucial step of introducing MWCNTs was achieved by functionalizing them by acid treatment to form stable and homogenous SiO2/MWCNTs sol. Scanning electron microscopy showed spherical particles in honeycomb network structure for undoped xerogel films whereas dispersion and wrapping of MWCNTs in silica matrix was observed for MWCNTs doped films. Various bond formations during the sol–gel process and surface modification were confirmed using Fourier transform infra-red and detailed study on the chemical bonding state of the films was carried out using X-ray photoelectron spectroscopy. Nanoindentation studies showed that the mechanical properties of MWCNTs doped xerogel film increase dramatically: higher modulus (E = 2.127 ± 0.095 GPa) and hardness (H = 0.035 ± 0.017 GPa) values than those of pristine xerogel film (E = 0.234 ± 0.058 GPa, H = 0.01 ± 0.003 GPa).  相似文献   

7.
《Journal of Non》2007,353(11-12):1172-1176
Hafnium silicate (HfSixOy) films were deposited by metal-organic chemical vapor deposition (MOCVD) using a combination of precursors: hafnium tetra-tert-butoxide [Hf(OC(CH3)3)4, HTB] and tetrakis-ethylmethylamino silane [Si(N(C2H5)(CH3))4, TEMAS]. The activation energy was independent on the ratio of precursor amounts in the surface reaction regime. The grown films showed Hf-rich characteristics and the impurity concentrations were less than 1 at.% (below detection limits). Hafnium silicate films were amorphous up to 700 °C annealing. Hf/(Hf + Si) composition ratio and dielectric constant (k) of the Hf-silicate films decreased by increasing the growth temperature above 270 °C.  相似文献   

8.
《Journal of Non》2006,352(52-54):5463-5468
This work reports the effect of the presence of a Ni buffer layer on the photoluminescence (PL) of SiCxNy nanoparticle films prepared by RF plasma magnetron sputtering process in a reactive N2 + Ar + H2 gas mixture. An introduction of a Ni buffer of 80 nm or thicker remarkably improves the PL of the films. Annealing in a temperature range of 400–1100 °C is found to significantly affect the PL intensity. Optimal PL is achievable at 600 °C. X-ray photoelectron and Fourier-transform infrared spectroscopy suggest that the strong PL is directly related to the composition of the SiCxNy nanoparticle and the concentration of Si–O, and Si–N bonds. The results are relevant to the development of wide bandgap optoelectronic devices.  相似文献   

9.
Thin films of hydrogenated amorphous germanium (a-Ge:H) deposited at high growth rate by radiofrequency (RF) glow discharge with 1 sccm GeH4 diluted in 40 sccm H2 have been studied. The effect of the films thicknesses on the defect density and on the structural parameters was carefully investigated by means of infrared spectroscopy, optical transmission measurements, and the photothermal deflection spectroscopy (PDS) technique. The results of this investigation show that when the films thicknesses increase, the total hydrogen content (CH) decreases and the hydrogen-bonding configuration changes. The results of these changes appear clearly on the defects density and on the microstructure parameter of the films, while the disorder parameter EOV and the optical gap ET remain practically constant (EOV  45 ± 2 meV, ET = 1.08 ± 0.02 eV). The improvement of these parameters is mainly due to the incorporation of the hydrogen in the bulk of the material as the monohydride groups (Ge-H) rather than the polyhydride groups (Ge-H2 and Ge-H2n) when the films thicknesses increase.  相似文献   

10.
《Journal of Non》2006,352(9-20):964-967
We have studied structural and electronic properties of μc-Si:H films deposited from SiH4 + H2 and SiH4 + H2 + Ar gas mixtures. The use of Ar containing gas mixtures for depositions allows us to increase deposition rate by a factor of two and to obtain films with an important fraction of large grains in comparison with SiH4 + H2 gas mixtures. Electronic properties of fully crystallized films become more intrinsic with the increase of large grain fraction. Deposition of highly p- and n-doped μc-Si:H layers from the dopant/SiH4 + H2 gas mixture at a temperature of 175 °C is possible without any remarkable changes in crystallinity in comparison with undoped films deposited with the same discharge conditions.  相似文献   

11.
MgxZn1?xO thin films were deposited on quartz substrates by RF magnetron sputtering. The effect of post-annealing temperature on structural, optical, and electrical properties was investigated with the annealing temperatures increasing from 450 to 750 °C. The crystallinity of MgxZn1?xO film annealed at 650 °C was significantly improved while the film annealed at 750 °C showed little improvement. The electrical properties degraded with the increase of annealing temperature. The annealing temperature seemed to impact the Eg value of MgxZn1?xO thin films because of the variation of carrier concentration.  相似文献   

12.
《Journal of Non》2007,353(24-25):2469-2473
Nanocrystalline thin films of titanium dioxide have been fabricated on glass and silica substrates from partially hydrolyzed precursor solution. These films were subjected to heat treatment for 1 h at temperatures 100, 200, 300, 400, 500, 600, 700, 800 and 900 °C and characterized by XRD, SEM, XPS and optical techniques. As deposited films are found to be amorphous and also contain hydroxyl and organic functional groups. Films heat treated above 100 °C do not contain hydroxyl and organic functional groups. Microcrystalline behavior is observed in the films heat treated above 300 °C. Crystallite size increases from ∼5 to 50 nm as sintering temperature is increased from 300 to 700 °C. Formation of anatase phase with c-axis length 7.03 Å is observed in the films annealed up to 700 °C. These films peel off from the substrate beyond 700 °C annealing temperature. Density as well as refractive index of the films increases with increase in annealing temperature up to 700 °C. Refractive index is found to show Cauchys behavior. Transmission better than 70% is observed in the visible range. There is a strong absorption around 370 nm, which is attributed to band gap absorption of the material.  相似文献   

13.
We have studied the temperature coefficient of the refractive index of synthetic silica glasses with various hydroxyl impurities. The refractive index was measured at 15 °C and 35 °C at 1.707–0.238 μm wavelengths. The temperature coefficient of a low-OH group (110 wt. ppm) containing glass increased from 8.0 ± 0.2 × 10?6/°C (at 1.707 μm) to 14.0 ± 0.2 × 10?6/°C (at 0.238 μm), although it increased respectively from 7.0 ± 0.2/°C to 12.0 ± 0.2 × 10?6/°C for a high-OH group (1300 wt. ppm) containing glass. The three-term Sellmeier equation, having two terms with resonance photon energies in the vacuum ultraviolet region and one term in the infrared region, was used to analyze the wavelength dispersion of the refractive index. Increasing temperatures shifted the resonance energy in the second term by ?4.14 ± 0.4 × 10?4 eV/°C for low-OH (110 wt. ppm) glass and ?2.64 ± 0.4 × 10?4 eV/°C for high-OH (1300 wt. ppm) glass. The fundamental absorption edge in the vacuum ultraviolet region shifted by ?8.8 ± 0.7 × 10?4 eV/°C for the low-OH glass and ?6.3 ± 0.7 × 10?4 eV/°C for the high-OH glass in a region of 25–100 °C. Both high-OH glass shift rates were lower than low-OH glass shift rates. The lower temperature coefficient for the Si–OH-related band probably explains the smaller temperature coefficient for high-OH glass: the absorption band of Si–O–H structure is located at lower energy side close to the fundamental absorption band associated with the Si–O–Si structure.  相似文献   

14.
《Journal of Non》2007,353(44-46):4048-4054
The nanostructural, chemical, and optical features of AlxSi0.45−xO0.55 (0  x 0.05) thin films were investigated in terms of Al concentration and post-deposition annealing conditions; the films were prepared by co-sputtering a Si main target and Al-chips, and the annealing was carried out at temperatures of 400–1100 °C. The a-Si0.45O0.55 films prepared without Al-chips and annealed at 800 °C contain ∼3.5 nm-sized Si nanocrystallites. The photoluminescence (PL) intensity as well as the volume fraction of Si nanocrystallites increased with increasing the concentration of Al to a certain level. In particular, the intensity of the PL spectra of the Al0.025Si0.425O0.550 films which were annealed at 800 °C increased significantly at wavelengths of ∼580 nm. It is highly likely that the observed increase in the PL intensity is caused by the raise in the total volume of the ∼3.5 nm-sized nanocrystallites in the films. The addition of Al as well as the post-deposition annealing allow adjustment and control of the nanostructural and light-emission features of the a-SiOx films.  相似文献   

15.
《Journal of Non》2007,353(13-15):1450-1453
Holographic recording by He–Ne laser (line 632.8 nm) light in amorphous As0.55Se0.45 thin films for different film thickness and grating period was studied. A strong dependence of the diffraction efficiency of the gratings on the readout light wavelength (650 nm, 805 nm and 1150 nm) was observed. A decrease in diffraction efficiency for longer wavelengths is explained by a decrease in the photoinduced changes of refractive index. It is shown that high efficiency gratings can be recorded in As0.55Se0.45 films with a thickness of ∼1 μm.  相似文献   

16.
《Journal of Non》2005,351(49-51):3725-3729
A novel amorphous zirconium carbon nitrides (ZrCN) material was deposited by reactive sputtering using a ZrC target (99.5% in purity) in a mixture of Ar and N2 ambient. The microstructure and mechanical properties of the ZrCN films were examined with respect to N2 pressure. For thermal stability characterization, the stacked structure of Cu/ZrCN/Si was subsequently subject to thermal treatments at temperatures from 300 °C to 900 °C for 30 min in a vacuum tube with the base pressure of 3 × 10−5 torr. The results show that the amorphous ZrCN films exhibit superior mechanical properties to either ZrN or ZrC including hardness and elastic modulus. The stacked samples were shown to be thermally stable up to about 800 °C from Auger electron spectroscopy and X-ray diffraction, where the ZrCN still remains its amorphous phase. The device completely fails at 900 °C and the mechanism is discussed in the paper.  相似文献   

17.
We report a quasi-analytical calculation describing the heterojunction between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si) at equilibrium. It has been developed and used to determine the carrier sheet density in the strongly inverted layer at the a-Si:H/ c-Si interface. The model assumes an exponential band tail for the defect distribution in a-Si:H. The effects of the different parameters involved in the calculation are investigated in detail, such as the Fermi level position in a-Si:H, the density of states and the band offsets. The calculation was used to interpret temperature dependent planar conductance measurements carried out on (n) a-Si:H/ (p) c-Si and (p) a-Si:H/(n) c-Si structures, which allowed us to confirm a previous evaluation of the conduction band offset, ?EC = 0.18 ± 0.05 eV, and to evaluate the valence band offset: ?EV = 0.36 ± 0.05 eV at the a-Si:H/ c-Si heterojunction. The results are placed in the frame of recent publications.  相似文献   

18.
G. Rehder  M.N.P. Carreño 《Journal of Non》2008,354(19-25):2359-2364
In this paper we study the Young’s modulus of PECVD obtained silicon rich (x > 0.5) a-SixC1?x:H thin films through the study of the resonance frequency of free standing cantilevers. These structures are fabricated based on front side bulk micromachining of Si substrate and actuated thermally. In this approach, an alternating electric current passes through a photolithography patterned metallic film deposited on the cantilever, heating the structure by Joule effect and inducing vibrations on the cantilever. This method of actuation is independent of the separation between the structure and substrate, which is its main advantage, because it allows the actuation of cantilevers that are bent upwards or downwards, which is an aspect of particular importance in the characterization of PECVD materials for MEMS applications. The work is focused on low stress silicon rich amorphous hydrogenated silicon carbide films obtained by PECVD at low temperatures (320 °C). The measurements were carried out in groups of cantilevers with different length (between 550 and 200 μm) and utilizing a-SiC:H films obtained with three different compositions. The results show that the films exhibit modulus of elasticity in the range of 20–35 GPa, low residual stress (~90 GPa) and maintain excellent chemical inertness in KOH and HF solutions.  相似文献   

19.
Low-temperature (<750 °C) growth of thick AlN epilayers on c-sapphire by plasma-assisted molecular-beam epitaxy under the Al-rich conditions (FAl/FN?<1.4) is reported here. Short periodic Al-flux interruptions controlled precisely by laser reflectometry ensure continuous growth of droplet-free and atomically smooth AlN films (rms<2 ML over 4 μm2) with a growth rate governed by the activated nitrogen flux. Lateral spreading of small accumulated Al clusters with their subsequent incorporation into the AlN layer during the Al-flux interruptions is supposed to be facilitated by activated nitrogen radicals. Strong influence of the remaining Al droplets on the subsequent growth of AlGaN/AlN superlattices is also demonstrated.  相似文献   

20.
B. Kościelska  A. Winiarski 《Journal of Non》2008,354(35-39):4349-4353
Sol–gel derived xNb2O5–(100 ? x)SiO2 films (where x = 100, 80, 60, 50, 40, 20, 0 mol%) were nitrided at various temperatures (800 °C, 900 °C, 1000 °C, 1100 °C and 1200 °C). The structural transformations occurring in the films as a result of ammonolysis were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The XRD results have shown that the temperatures below 1100 °C were too low to obtain a pure NbN phase in the samples. The AFM observations indicate that the formation of the NbN phase and the size of NbN grains are related to the silica content in the layer. NbN grains become more regular and larger as the niobium content increases. The maximum grain size of about 100 nm was observed for x = 100. Preparation of the Nb2O5–SiO2 sol–gel derived layers and the subsequent nitridation is a promising method of inducing crystalline NbN in amorphous matrices. It follows from the XPS results that a small amount of Nb2O5 remains in the films after nitridation at 1200 °C and that nitrogen reacted not only with Nb2O5 but also with SiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号