首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electron transfer to or from molecules containing multiple redox centers has been extensively investigated. Rapid scan time-resolved FT-IR-RAS spectroelectrochemistry was used to investigate the electron-transfer mechanism in this report. The electron transfer of two typical compounds, 1,4-benzoquinone and 1,4-bis(2-ferrocenylvinyl)benzene, was examined with this method. Although the two compounds show two-electron transfer in the redox process, 1,4-benzoquinone exhibits two single electron waves while 1,4-bis(2-ferrocenylvinyl)benzene exhibits a single wave in cyclic voltammetric experiments. The IR absorption of the intermediate, BQ*- and p-(Fc-CH=CH)+2-benzene, at 1506 and 1589 cm(-1), respectively, appeared and disappeared on the experimental time scale in the oxidation and reduction process was observed. In the oxidation process of the p-(Fc-CH=CH)2-benzene molecule, one Fc was oxidated to Fc+ first and the electron-withdrawing ability of Fc+ was stronger than that of Fc, which resulted in the D-pi-A structure and the band at 1589 cm(-1) becoming visible. Then as the oxidation continues, the other Fc was oxidated to Fc+ too, which resulted in the reforming of the symmetry of the benzene ring A-pi-A, so the band at 1589 cm(-1) disappeared. Similar phenomenon can be elucidated in the reduction process but the configuration type changed from A-pi-A to D-pi-A and finally to D-pi-D. Hence, not only 1,4-benzoquinone but also 1,4-bis(2-ferrocenylvinyl)benzene show two consecutive one-electron processes. In addition, it is observed that the existing time of the electrochemical reaction intermediate (BQ*- and p-(Fc-CH=CH)+2-benzene) is prolonged at low temperatures due to slow reaction kinetics.  相似文献   

2.
We report on the synthesis of complexes having two equivalent redox active 2,5-dimethylazaferrocenyl entities connected by heteroaryl (heteroaryl = thiophenyl, bithiophenyl and pyridyl) bridges. The new compounds have been investigated by various electrochemical techniques including cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SW) and were found to exhibit two consecutive reversible or partially reversible one-electron oxidations. Comproportionation constants (Kc) calculated from ΔE1/2 values indicate that the thermodynamic stability of their monoxidized forms exceeds those of analogous ferrocenes. In this paper we also report the X-ray crystal structure and UV–Vis spectroelectrochemistry of parent 2,5-dimethylazaferrocene.  相似文献   

3.
Four cyclometalated diiridium complexes, with IrCp*Cl (Cp*=η5-C5Me5) termini bridged by 1,4- and 1,3-bis(p-tolyliminoethyl)benzene ( 1 , 2 ), or 1,4- and 1,3-bis(2-pyridyl)benzene ( 3 , 4 ), were prepared and characterized by nuclear magnetic resonance (NMR) spectroscopy and single-crystal X-ray diffraction (complexes 1 , 2 , and 4 ). The two iridium centers in complexes 1 and 3 are thus bound at the central benzene ring in the para-position (trans-Ir2), whereas those in complexes 2 and 4 are in the meta-position (cis-Ir2). Cyclic voltammograms of all four complexes show two consecutive one-electron oxidations. The potential difference between the two anodic steps in 1 and 3 is distinctly larger than that for 2 and 4 . The visible–near-infrared (NIR)–short-wave infrared (SWIR) absorption spectra of trans-Ir2 monocations 1 + and 3 + are markedly different from those of cis-Ir2 monocations 2 + and 4 +. Notably, strong near-infrared electronic absorption appears only in the spectra of 1 + and 3 + whereas 2 + and 4 + absorb only weakly in the NIR-SWIR region. Combined DFT and TD-DFT calculations have revealed that (a) 1 + and 3 + (the diiridium-benzene trans-isomers) display the highest occupied spin-orbitals (HOSO) and the lowest unoccupied spin-orbital (LUSO) evenly delocalized over both molecule halves, and (b) their electronic absorptions in the NIR-SWIR region are attributed to mixed metal-to-ligand and ligand-to-ligand charge transfers (MLCT and LLCT). In contrast, cis-isomers 2 + and 4 + do not feature this stabilizing π-delocalization but a localized mixed-valence state showing a weak intervalence charge-transfer (IVCT) absorption in the SWIR region.  相似文献   

4.
宋晗  王娜娜  李悦  阮文娟 《物理化学学报》2013,29(11):2300-2307
设计合成了新型含有末端炔基的Salen型配体H2Ln及其系列金属配合物MLn(n=1,2;M=Ni,Cu,Mn),并用氢核磁共振(1H NHR)谱、电喷雾质谱(ESI-MS)、元素分析(EA)、傅里叶变换红外(FT-IR)光谱和紫外-可见(UV-Vis)光谱等对各目标化合物进行了表征.采用循环伏安法研究了配体及其金属配合物的电化学氧化还原性质.研究发现,配体除H2L1外均在测试范围内出现特征的亚胺氧化还原峰.镍和铜的配合物均经历了两个单电子的氧化还原过程;锰的配合物均出现由Mn(III)/Mn(II)产生的一对氧化还原峰,该过程为准可逆的单电子过程.H2Ln及MLn的溶液摩尔电导率数据显示,各目标化合物为弱电解质,具有一定的导电性.  相似文献   

5.
采用现场红外光谱电化学技术, 研究了2,6-二氯苯醌(DCBQ)和2,6-二甲氧基苯醌(DMOBQ)在乙腈溶液中对CO2的电化学捕获过程. 结果表明, 2种醌类衍生物在乙腈溶液中的电化学循环伏安(CV)曲线呈现2对氧化还原峰, 遵循连续两步单电子过程. 加入CO2后, 由于取代基亲电性的不同, 2种衍生物发生了不同的变化: DCBQ仍然呈现2对氧化还原峰, 但是第二对还原峰发生了正移动; 而DMOBQ的2对氧化还原峰变成1对峰. 根据现场红外光谱分析结果分别得到了DCBQ和DMOBQ电化学捕获CO2过程的不同机理. DCBQ是二价阴离子发生化学变化的电化学-电化学-化学(EEC)机理, 而DMOBQ则是还原产物一价阴离子自由基参与化学变化的电化学-化学-电化学(ECE)机理. 进一步对CO2捕获过程进行了定量分析, 得出2种反应的化学计量比均为1∶1.  相似文献   

6.
Seven Cd(II)–ferrocenesuccinate coordination complexes with the formulas [Cd(η2-FcCOC2H4COO)2(pbbbm)]2 (1), [Cd(η2-FcCOC2H4COO)(pbbbm)Cl]2 (2), [Cd(η2-FcCOC2H4COO)(pbbbm)I]2 (3), {[Cd(η2-FcCOC2H4COO)2(btx)2]2(CH3OH)0.5} (4), [Cd(η2-FcCOC2H4COO)2(bix)]2(H2O) (5), {[Cd(η2-FcCOC2H4COO)(bbbm)1.5Cl] · (CH3OH)0.5}n (6), and {[Cd(η2-FcCOC2H4COO)(mbbbm)Cl] · (H2O)2.75}n (7) [pbbbm = 1,4-Bis(benzimidazole-1-ylmethyl)benzene), btx = 1,4-bis(triazol-1-ylmethyl)benzene), mbbbm = 1,3-bis(benzimidazole-1-ylmethyl)benzene), bix = 1,4-bis(imidazol-1-ylmethyl)benzene, bbbm = 1,1-(1,4-Butanediyl)bis-1H-benzimidazole)] have been synthesized and characterized. Single-crystal X-ray analysis reveals that complexes 15 are all dimers and bridged by pbbbm, btx and bix, respectively. But the five complexes present some differences in their dimeric conformations, which can be ascribed to the impacts of adjuvant ligands and counter anions. In contrast to complexes 1–5, both 6 and 7 are of 1-D structures (with the same counter anions), and the former is double ladder-like structure only bridged by bbbm, while the latter is chain-like structure bridged by chlorine anions and adjuvant ligand mbbbm. Notably, various π–π interactions are found in complexes 17, and they have significant contributions to molecular self-assembly processes. The electrochemical studies of complexes 17 in DMF solution display irreversible redox waves and indicate that the half-wave potentials of the ferrocenyl moieties in these complexes are all shifted to positive potential compared with that of ferrocenesuccinate.  相似文献   

7.
Thermal substitution reaction of Cr(CO)42:2-1,5-cyclooctadiene), Mo(CO)42:2-norbornadiene), and W(CO)52-bis(trimethylsilyl)ethyne) with N,N′-bis(ferrocenylmethylene)ethylenediamine (bfeda) yields M(CO)4(bfeda) complexes which could be isolated from the reaction solution and characterized by elemental analysis, MS, IR, and NMR spectroscopy. In the case of tungsten, W(CO)5(bfeda) is formed as intermediate and then undergoes the ring closure reaction yielding the ultimate product W(CO)4(bfeda). The electrochemical behavior of the M(CO)4(bfeda) complexes was studied by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in dichloromethane with tetrabutylammonium tetrafluoroborate as electrolyte. Constant potential electrolysis of the complexes was performed successively at their peak potentials at 0 °C in their CH2Cl2 solution and the electrolysis was followed by in situ recording the electronic absorption spectra in every 5 mC. In the electrolysis of Cr(CO)4(bfeda), the central Cr(0) is oxidized first and electrolysis continues with oxidations of two ferrocenyl groups until the end of totally three moles of electron passage per mole of complex. In the electrolysis of Mo(CO)4(bfeda) and W(CO)4(bfeda) the first oxidation occurs on the central atom forming a short-lived species which undergoes an intramolecular one-electron transfer and is reduced back to M(0) while one of the ferrocene units is oxidized to the ferrocenium cation at the same time. This indicates that the electron is transferred from iron to the central metal atom.  相似文献   

8.
This article describes the synthesis and the cation-radical polymerization (Scholl reaction) of 1,3-bis[4-(1-naphthoxy) benzoyl] benzene ( 6 ) and 1,4-bis[4-(1-naphthoxy) benzoyl]- benzene ( 7 ) initiated by FeCI3. This polymerization produced poly(ether ether ketone ketone)s (PEEKK) of number average molecular weight (M?n) up to 5400 g/mol. The synthesis of bis[4-(1-naphthoxy) phenyl] methane ( 8 ), 1,3-bis[4-(1-napthoxy) phenylmethyl] benzene ( 9 ), and 1,4-bis[4-(1-naphthoxy) phenylmethyl] benzene ( 10 ) are also described. Polyethers of M?n up to 15400 g/mol at a FeCl3/monomer molar ratio of 2/1 were obtained. An increased polymerizability of the monomers 9 and 10 containing two CH2 groups versus that of the corresponding monomers containing two carbonyl groups ( 6 and 7 ) was observed. This enhanced polymerizability was explained based on the increased nucleophilicity of monomers 9 and 10 .  相似文献   

9.
Four new trinuclear Fe(III) and Cr(III) complexes involving tetradentate Schiff bases N,N′-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(salophenH2) with 2,4,6-tris(3,4-dihydroxybenzimino)-1,3,5-triazine have been synthesized and characterized by means of elemental analysis, 1H N.M.R., FT-IR spectroscopy, thermal analyses and magnetic susceptibility measurements. The complexes have also been characterized as low-spin distorted octahedral Fe(III) and Cr(III) bridged by catechol group.  相似文献   

10.
In the present study, we discussed to synthesis of a new Schiff base with nitro groups and its complexation properties with Fe/Cr(III) salen/salophen capped complexes. For this, 1,3,5-tris (formylphenoxymethyl)benzene (1, TRIPOD) involving aldehyde groups was converted to the Schiff base derivative (2, TNPIM-TRIPOD) using 4-nitroaniline. The synthesized compound 2 were reacted with four new trinuclear Fe(III) and Cr(III) complexes involving tetradenta Schiff bases N,N-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(salophenH2). Characterization of all compounds was made with elemental analysis, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nuclear magnetic resonance (1H-NMR), and magnetic susceptibility measurement. The complexes can also be characterized as low-spin distorted octahedral Fe(III) and Cr(III) bridged by nitro groups.  相似文献   

11.
Dinuclear palladium complexes bridged by a novel PNNP ligand, N,N′-bis[(2-diphenylphosphino)phenylformamidinate (dpfam), were found to be very efficient and selective catalysts for the double carbonylation of iodobenzene with diethylamine using K3PO4 as base and 1,4-dioxane as solvent with a TON up to 105 and selectivity of 96%.  相似文献   

12.
bis(alkoxycarbonyl) complexes of platinum of the type [Pt(COOR)2L] [L = 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), l,4-bis(diphenylphosphino)butane (dppb), 1,1'-bis(diphenylphosphino)ferrocene (dppf) or 1,2-bis-(diphenylphosphino)benzene (dpb); R = CH3, C6H5 or C2H5] were obtained by reaction of [PtCl2L] with carbon monoxide and alkoxides. Palladium and nickel complexes gave only carbonyl complexes of the type [M(CO)L] or [M(CO)2L]. The new complexes were characterized by chemical and spectroscopic means. The X-ray structure of [Pt(COOCH3)2(dppf] · CH3OH is also reported. The reactivity of some alkoxycarbonyl complexes was also investigated.  相似文献   

13.
Metal–ligand interactions in monomeric and polymeric transition metal complexes of Schiff base ligands largely define their functional properties and perspective applications. In this study, redox behavior of a nickel(II) N4-anilinosalen complex, [NiAmben] (where H2Amben = N,N′-bis(o-aminobenzylidene)ethylenediamine) was studied by cyclic voltammetry in solvents of different Lewis basicity. A poly-[NiAmben] film electrochemically synthesized from a 1,2-dichloroethane-based electrolyte was investigated by a combination of cyclic voltammetry, electrochemical quartz crystal microbalance, in situ UV-Vis spectroelectrochemistry, and in situ conductance measurements between −0.9 and 1.3 V vs. Ag/Ag+. The polymer displayed multistep redox processes involving reversible transfer of the total of ca. 1.6 electrons per repeat unit, electrical conductivity over a wide potential range, and multiple color changes in correlation with electrochemical processes. Performance advantages of poly-[NiAmben] over its nickel(II) N2O2 Schiff base analogue were identified and related to the increased number of accessible redox states in the polymer due to the higher extent of electronic communication between metal ions and ligand segments in the nickel(II) N4-anilinosalen system. The obtained results suggest that electrosynthesized poly-[NiAmben] films may be viable candidates for energy storage and saving applications.  相似文献   

14.
Two unsymmetric meso‐tetraferrocenyl‐containing porphyrins of general formula Fc3(FcCOR)Por (Fc=ferrocenyl, R=CH3 or (CH2)5Br, Por=porphyrin) were prepared and characterized by a variety of spectroscopic methods, whereas their redox properties were investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) approaches. The mixed‐valence [Fc3(FcCOR)Por]n+ (n=1,3) were investigated using spectroelectrochemical as well as chemical oxidation methods and corroborated with density functional theory (DFT) calculations. Inter‐valence charge‐transfer (IVCT) transitions in [Fc3(FcCOR)Por]+ were analyzed, and the resulting data matched closely previously reported complexes and were assigned as Robin–Day class II mixed‐valence compounds. Self‐assembled monolayers (SAMs) of a thioacetyl derivative (Fc3(FcCO(CH2)5SCOCH3)Por) were also prepared and characterized. Photoelectrochemical properties of SAMs in different electrolyte systems were investigated by electrochemical techniques and photocurrent generation experiments, showing that the choice of electrolyte is critical for efficiency of redox‐active SAMs.  相似文献   

15.
Fluorescence quenching of 1,4-bis(1H-pyrrol-1-yl)benzene, 1-(1H-pyrrol-2-yl)-1-(1-vinyl-1H-pyrrol-1-yl)benzene, and 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene with chloromethanes (methylene chloride, chloroform, and carbon tetrachloride) in solvents with different polarities follows electron-transfer mechanism. The occurrence of an electron-transfer step is confirmed by formation of short-lived pyrrolylbenzene radical cations. An exception is quenching of fluorescence of 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene in n-hexane in the presence of CCl4 and CHCl3 and in pure CCl4. In this case, neutral 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene·-Cl radical is formed via recombination of 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene radical cation and chloride anion. A relation was found between the nature of the short-lived species detected by laser photolysis and stable product obtained by stationary photolysis.  相似文献   

16.
The reaction of different metallocene fragments [Cp2M] (Cp=η5‐cyclopentadienyl, M=Ti, Zr) with diferrocenylacetylene and 1,4‐diferrocenylbuta‐1,3‐diyne is described. The titanocene complexes form the highly strained three‐ and five‐membered ring systems [Cp2Ti(η2‐FcC2Fc)] ( 1 ) and [Cp2Ti(η4‐FcC4Fc)] ( 2 ) (Fc=[Fe(η5‐C5H4)(η5‐C5H5)]) by addition of the appropriate alkyne or diyne to Cp2Ti. Zirconocene precursors react with diferrocenyl‐ and ferrocenylphenylacetylene under C? C bond coupling to yield the metallacyclopentadienes [Cp2Zr(C4Fc4)] ( 3 ) and [Cp2Zr(C4Fc2Ph2)] ( 5 ), respectively. The exchange of the zirconocene unit in 3 by hydrogen atoms opens the route to the super‐crowded ferrocenyl‐substituted compound tetraferrocenylbutadiene ( 4 ). On the other hand, the reaction of 1,4‐diferrocenylbuta‐1,3‐diyne with zirconocene complexes afforded a cleavage of the central C? C bond, and thus, dinuclear [{Cp2Zr(μ‐η12‐C?CFc)}2] ( 6 ) that consists of two zirconocene acetylide groups was formed. Most of the complexes were characterized by single‐crystal X‐ray crystallography, showing attractive multinuclear molecules. The redox properties of 3 , 5 , and 6 were studied by cyclic voltammetry. Upon oxidation to 3 n+, 5 n+, and 6 n+ (n=1–3), decomposition occured with in situ formation of new species. The follow‐up products from 3 and 5 possess two or four reversible redox events pointing to butadiene‐based molecules. However, the dinuclear complex 6 afforded ethynylferrocene under the measurement conditions.  相似文献   

17.
Self-assembled, chair-shaped dirhenium(I) macrocyclic compounds featuring the two different bis-chelating quinone dianions (1, L = dhnq(2-); 2, L = dhaq(2-); H(2)dhnq = 6,11-dihydroxy-5,12-naphthacenedione; H(2)dhaq = 1,4-dihydroxy-9,10-anthraquinone) that interface with two fac-Re(CO)(3) cores and a ditopic semirigid N-donor 1,4-bis(5,6-dimethylbenzimidazol-1-ylmethyl)naphthalene (L' = p-NBimM) ligand coordinated to the remaining orthogonal site were prepared in high yields. Their structures were confirmed by single-crystal X-ray diffraction analysis. Electrochemical assessments, using cyclic voltammetry (CV) and UV-vis-NIR spectroelectrochemistry (SEC), revealed the existence of two well-separated, single-electron quinone ligand-centered, reversibly accessible 0, -1, and -2 redox states. Among the two singly reduced radical complexes, the symmetrically bridged quinone complex 1(?-), showed a strong absorption in the NIR regions, which was not observed for the neutral and doubly reduced states, analogous to that of the free dhnq(3?-) quinone. In contrast, when 2 was reduced to 2(?-), a broad signal at 866 nm was observed, very similar to the reduced dhaq(3?-) quinone. This difference in spectral behavior in the singly reduced states is likely due to the annealed benzene ring in 1 and dhnq(2-) because of its symmetrical π-electron system, which is perturbed to a lesser degree compared to asymmetric 2 and dhaq(2-). Reduction to 1(?-) produces a small but not negligible g factor anisotropy (Δg = 0.024) in the electron spin resonance (ESR) signal, indicative of a very small metal-centered spin (5%), but 2(?-) shows a g value in the expected range for organic radicals (no detectable Δg). Thus, the combined investigations reveal that the singly reduced metallacycles are best described as being highly stable, noncommunicating, localized, quinonoid-centered radical complexes, [(CO)(3)Re(I)(μ-L(3?-))(μ-L')Re(I)(CO)(3)](?-).  相似文献   

18.

Two novel coordination polymers, [Cu(II)(NO3)2(bbmb)] n (1) and [Mn(II)(Cl2)(BBMB)2] (2) [bbmb = 1,4-bis(1-benzimidazolylmethyl)benzene], were synthesized and characterized by IR and thermal analyses. Single-crystal X-ray diffraction analysis shows that Polymer 1 exhibits a distorted metal tetrahedron in its structure, involving two nitrogen atoms from bbmb ligands and two oxygen atoms from NO3 groups. Each Cu(II)(NO3)2 unit is bridged by bbmb to form a zigzag chain structure. Polymer 2 possesses a two-dimensional network. The coordination environment around Mn(II) is a distorted octahedron and its solid-state structure exhibits a layered packing mode. In the polymers the two coordinating nitrogen atoms on bridging bbmb ligands are trans to the central benzene plane.  相似文献   

19.
Half-sandwich rhodium monohydrides are often proposed as intermediates in catalysis, but little is known regarding the redox-induced reactivity accessible to these species. Herein, the bis(diphenylphosphino)ferrocene (dppf) ligand has been used to explore the reactivity that can be induced when a [Cp*Rh] monohydride undergoes remote (dppf-centered) oxidation by 1e. Chemical and electrochemical studies show that one-electron redox chemistry is accessible to Cp*Rh(dppf), including a unique quasi-reversible RhII/I process at −0.96 V vs. ferrocenium/ferrocene (Fc+/0). This redox manifold was confirmed by isolation of an uncommon RhII species, [Cp*Rh(dppf)]+, that was characterized by electron paramagnetic resonance (EPR) spectroscopy. Protonation of Cp*Rh(dppf) with anilinium triflate yielded an isolable and inert monohydride, [Cp*Rh(dppf)H]+, and this species was found to undergo a quasireversible electrochemical oxidation at +0.41 V vs. Fc+/0 that corresponds to iron-centered oxidation in the dppf backbone. Thermochemical analysis predicts that this dppf-centered oxidation drives a dramatic increase in acidity of the Rh−H moiety by 23 pKa units, a reactivity pattern confirmed by in situ 1H NMR studies. Taken together, these results show that remote oxidation can effectively induce M−H activation and suggest that ligand-centered redox activity could be an attractive feature for the design of new systems relying on hydride intermediates.  相似文献   

20.
Tetracycline (TC) is one of the most widely used antibiotics in aquaculture, and its good water solubility makes it a major contaminant in seawater. Therefore, it is very necessary and challenging to develop an efficient detection method. In this work, two novel metal–organic frameworks [Zn (bpydb)(bimmb)0.5]n ( 1 ), {[Zn2(bpydb)2(bimb)]·[Zn (bpydb)(bimb)]·H2O}n ( 2 ), (bimb = 1,4-bis (lmidazol) butane, H2bypdb = 4,4′-(4,4’-Bipyridine-2,6-diyl)dibenzoic acid, bimmb = 1,4-bis (imidazol-1-ylmethyl)benzene) were successfully synthesized under solvothermal conditions. Zn-MOF 1 – 2 were characterized by X-ray powder diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). As expected, 1 – 2 have excellent fluorescence properties, thermal stability and good structural stability in water. TC in water can be detected by fluorescence quenching with high selectivity. At the same time, the fluorescence quenching efficiency remains unchanged in the presence of other interfering antibiotics and in aqueous solutions of different pH values (pH = 3–10). The detection ability of 1 in real seawater has not changed substantially, showing considerable practical application prospects. Interestingly, 1 – 2 also efficiently detected traces of acetone in solution with detection limits of 0.07 μM (4.38 ppb) and 0.18 μM (10.85 ppb), respectively. In addition, the mechanism of fluorescence quenching is further discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号