首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Non》2006,352(21-22):2100-2108
Electrical and optical properties of phosphate glasses containing vanadium and manganese ions in the xP2O5–[(100  x)(V2O5 + MnO)] (PVM) system have been investigated. This is the last article of a III-part series devoted to the electronic properties of phosphate glasses containing a mixture of transition ions. The first article was devoted to the electrical conductivity of glasses having the general composition: xP2O5–[(100  x)(V2O5 + Fe2O3)] (PVF). Competitive transport of small polarons on V and Fe ion sites was found to contribute to a mixed transition-ion effect (MTE) in PVF glasses. Several features of MTE were found to be similar to the well known mixed alkali effect, observed in glasses containing two alkali ions. In the second article, optical absorption and electronic conduction of xP2O5–[(100  x)(Fe2O3 + MnO)] (PFM) glasses were reported. In the absence of competitive transport between the two transition ions (since Mn ions were determined not to contribute to dc conduction), MTE was not observed. The most important feature of PFM glasses was a sharp increase in resistivity at a critical concentration of iron ions, similar to ‘metal–insulator transition’ (MIT). In the present article, we report a resistivity transition in PVM glasses which is similar to that exhibited by the glasses of the PFM series. While Fe ions contributed the carriers in the PFM glasses, V ions serve the same purpose in the PVM compositions. As the concentration of vanadium ions, nV, is decreased in the composition range 0.82 > nV > 0.40, resistivity (ρ) increases marginally. For glasses with 0.2 < nV < 0.40, resistivity and the activation energy for dc conduction (W) increase sharply with decreasing nV, marking the incidence of an MIT-type transition. As in the PFM glasses, the observation of MIT coincides with the transformation of small polarons to small bipolarons, which is confirmed by the shifting of the small polaron optical absorption band to higher energies with decreasing V concentration.  相似文献   

2.
A series of tellurite glasses of composition, 75TeO2–20ZnO–(5 ? x)La2O3xEr2O3 (x = 0.05, 0.1, 0.3, 0.6, 1.0, 2.0, and 3.0 mol%) with different hydroxl content were prepared. The effect of Er3+ and OH? groups concentration on the emission properties of Er3+: 4I13/2  4I15/2 transition in tellurite glasses was investigated. The constant KOH–Er for Er3+ in tellurite glasses, which represents the strength of interaction between Er3+ and OH? groups in the case of energy migration, was about 14 × 10?19 cm4 s?1. The interaction parameter CEr,Er for the migration rate of Er3+: 4I13/2  4I13/2 transition in tellurite glass was 46 × 10?40 cm2, which indicates that concentration quenching in Er3+-doped modified tellurite glass for a given Er3+ concentration is much stronger than in silicate and phosphate glasses.  相似文献   

3.
A series of borophosphate glasses in the composition (B2O3)0.10–(P2O5)0.40–(CuO)0.50?x–(MoO3)x; 0.05 ? x ? 0.50 have been investigated for room temperature density and dc conductivity over the temperature range from 350 to 650 K. The density decreased with increase in MoO3 over the composition range studied except a slight increase around 0.35 mole fraction. The observed initial decrease in conductivity with the addition of MoO3 has been attributed to the hindrance offered by the Mo+ ions to the electronic motions. The observed peak-like behavior in conductivity in the composition range 0.20 – 0.50 mol% of MoO3 is ascribed to the mixed transition metal ion effect (MTE). Mott’s small polaron hopping model has been used to analyze the high temperature conductivity data and the activation energy for conduction has been determined. The low temperature conductivity has been analyzed in view of Mott’s and Greaves variable range hopping models. It is for the first time that conduction mechanisms have been explored and MTE detected in mixed transition metal ions doped borophosphate glasses.  相似文献   

4.
《Journal of Non》2006,352(30-31):3326-3331
A series of tellurite glasses containing Fe2O3 with the nominal composition x(Fe2O3)–(1−x)(TeO2), where x = 0.05, 0.10, 0.15, and 0.20, have been synthesized and investigated using X-ray photoelectron spectroscopy (XPS) and magnetization techniques. The Te 3d core level spectra for all glass samples show symmetrical peaks at essentially the same binding energies as measured for TeO2 indicating that the chemical environment of the Te atoms in these glasses does not vary significantly with the addition of Fe2O3. Furthermore, the full-width at half-maximum (FWHM) of each peak does not vary with increasing Fe2O3 content which suggests that the Te ions exist in a single configuration, namely TeO4 trigonal bipyramid (tbp). The O 1s spectra are narrow and symmetric for all compositions such that oxygen atoms in the Te–O–Te, Fe–O–Fe and Te–O–Fe configurations must have similar binding energies. The analysis of the Fe 3p spectra indicates the presence of Fe3+ ions only, which is consistent with the valence state of the Fe ions determined from magnetic susceptibility measurements.  相似文献   

5.
《Journal of Non》2005,351(49-51):3752-3759
Alkali fluoroborate glass systems containing manganese cations have been thoroughly investigated in order to obtain information about the structural role of manganese in such glass hosts. The amorphous phase of the prepared glass samples R2O–RF–B2O3:MnO (with R = Li and Na) was confirmed from their X-ray diffraction. From the infrared spectra of these glass systems it was concluded that the glass structure contains two group of bands; one due to trigonal BO3 units and the second due to the tetrahedral BO4 units. As manganese was introduced, replacing lithium or sodium, it acts as a network modifier and the intensity of the second group of bands increases at the expense of the first group of bands. The optical absorption spectra of R2O–RF–B2O3:MnO exhibited two conventional absorption bands; one due to Mn2+ ions and the other due to Mn3+ ions. The ESR spectra of these glasses showed a six-line hyper-fine structure centered at g = 2.01 (due to Mn2+ ions) and another signal at g = 4.3 (due to Mn3+ ions). The intensity of optical absorption bands and the ESR signal due to Mn2+ ions decreases with increasing MnO concentration indicating the conversion of Mn2+ ions into Mn3+ ions in the glass network. The thermoluminescence studies on these glass systems showed a quenching of TL output with increase in the concentration of MnO. All the obtained results were discussed on the basis of the glass structure and the conversion of Mn2+ into Mn3+ ions with increasing concentration of MnO in the glass systems.  相似文献   

6.
Characterization of B2O3 and/or WO3 containing tellurite glasses was realized in the 0.80TeO2–(0.20 ? x)WO3 ? xB2O3 system (0  x  0.20 in molar ratio) by using differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry techniques. Glasses were prepared with a conventional melt-quenching technique at 750 °C. To recognize the thermal behavior of the glasses, glass transition and crystallization temperatures, glass stability value, glass transition activation energy, fragility parameter were calculated from the thermal analyses. Density, molar volume, oxygen molar volume and oxygen packing density values were determined to investigate the physical properties of glasses. Fourier transform infrared spectra were interpreted in terms of the structural transformations on the glass network, according to the changing B2O3 and/or WO3 content. Crystallization behavior of the glasses was investigated by in situ X-ray diffraction measurements and microstructural characterization was realized by scanning electron microscopy and energy dispersive X-ray spectrometry analyses.  相似文献   

7.
Sodiumsulpho borophosphate glasses with composition (40 ? x)Na2SO4–30B2O3–30P2O5: xMnO with x ranging from 0 to 5.0 mol% were manufactures. Dielectric spectra have been studied over a wide frequency range of 102–105 Hz and in the temperature range within 30–250 °C. The valance states of manganese ions and their ligand coordination in the glass network have been investigated using optical absorption, luminescence and ESR spectroscopy. The analysis of the these results has indicated that the manganese ions exist both in Mn2+ as well as in Mn3+ states and occupy prevailingly octahedral positions and serve as modifiers similarly to Na+ ions The values of dielectric parameters (dielectric constant, ε′(ω), loss tan δ and ac conductivity, σac) were found to increase with increasing MnO content. They play a role of modifiers similarly to Na+ ions, create bonding defects and free ions viz., [SO4]2?, [POO1/2O2]2?, [POO0/2O3]3–, Na+ and (NaSO4)?. The migration of these charge carriers would build up space charge polarization and may be responsible for the enhanced dielectric parameters. The ac conductivity also is enhanced with increasing MnO content. The mechanism responsible for such increase is well explained based on the modifying action of Mn2+ ions.  相似文献   

8.
Transparent glasses, obtained through melt quenching technique, with composition 30LiF-10SrO-(60-x)B2O3-xMnO, with 0  x  3 mol% (x = 0, 1, 1.5, 2, 2.5 and 3), were characterized by X-ray diffraction (XRD) and then they were analyzed for physical, spectroscopic studies (optical absorption, electron spin resonance (ESR) and FTIR) and dielectric properties (dielectric constant ε′, loss tanδ ?and conductivity σac etc.). The results were analyzed and correlated with each other in the light of local environment and oxidation states of manganese ion in the glass network. The increase in the area of optical absorption peak and ESR signal intensity indicate that both Mn2+ and Mn3+ ions exist in octahedral symmetry are increased with increasing MnO dopant in the glass matrix. The semi conducting nature of the glass network is found to increase due to the considerable increase in BO3, MnO6 structural units whenever B2O3 in the host glass is gradually replaced by MnO.  相似文献   

9.
Estimates of Kerr electrooptical sensitivity of several tellurite glasses are presented. The highest value of Kerr coefficient B  190 × 10?16 m V?2 is registered for 0.6TeO2–0.3TlO0.5–0.1ZnO glass. This evidences the prospects of thallium–tellurite glass system for electrooptical applications. A gradual decrease of B from 41 × 10?16 to 26 × 10?16 m V?2 in (1 ? x) TeO2  xNbO2.5 system is revealed for x increasing from 0.1 to 0.15. No crystalline phase was found in that system, thus allowing attributing its Kerr sensitivity to the intrinsic properties of the glass matrix. The Kerr coefficient variation from 66 to 81 × 10?16 m V?2 was observed for 0.85TeO2–0.15WO3 glasses co-doped with small amounts of silver and cerium. The analysis of optical absorption spectra of several silver-containing tellurium–tungsten oxide glasses makes it possible to think that introducing cerium provokes formation of new mid-range orderings.  相似文献   

10.
《Journal of Non》2007,353(24-25):2355-2362
EPR and optical absorption spectra of 0.5 mol% MnO2 doped xLi2O–(30  x)Na2O–69.5B2O3 (5  x  25) glasses have been studied. The EPR spectra exhibit resonance signals characteristic of Mn2+ ions. The resonance signal at g  2.0 is due to Mn2+ ions in an environment close to octahedral symmetry, whereas the resonances at g  4.3 and g  3.3 are attributed to the rhombic surroundings of the Mn2+ ions. The ionic character (A), the number of spins participating in resonance (N), optical band gap energies (Eopt) and Urbach energies (ΔE) show the mixed alkali effect (MAE) with composition. The present study gives an indication that the size of alkalis we choose, is also an important contributing factor in showing the MAE. The variation of N with temperature obeys the Boltzmann law. The optical absorption spectra show a single broad band at ∼21 000 cm−1 corresponding to the transition 6A1g(S)  4T1g(G) which exhibits a blue shift with x. The theoretical values of optical basicity (Λth) have also been evaluated.  相似文献   

11.
Copper ions incorporated into alkaline earth zinc borate glasses 10RO + 30ZnO + 60B2O3 (R = Mg, Ca and Sr) and 10SrO + (30 ? x)ZnO + 60B2O3 + xCuO (x = 0, 0.1, 0.3, 0.5, and 0.7 wt.%) were characterized by electron paramagnetic resonance (EPR), optical absorption and FTIR techniques. The EPR spectra of all the glass samples exhibit resonance signals characteristic of Cu2+ ions. The values of spin-Hamiltonian parameters indicate that the Cu2+ ions in alkaline earth zinc borate glasses were present in octahedral sites with tetragonal distortion. The spin concentration (N) participating in resonance was calculated as a function of temperature for strontium zinc borate (SrZB) glass sample containing 0.7 wt.% of Cu2+ ions and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility (χ) was calculated at different temperatures and the Curie constant was evaluated from the 1/χ-T graph. The optical absorption spectra of these samples show only one absorption band. The optical band gap energies (Eg) and Urbach energy (ΔE) are calculated from their ultraviolet edges. The FTIR studies show different stretching and bending vibrations of alkaline earth zinc borate glasses.  相似文献   

12.
S. Azianty  A.K. Yahya  M.K. Halimah 《Journal of Non》2012,358(12-13):1562-1568
Ternary tellurite glasses with the chemical formula 80TeO2–(2 ? x)ZnO–xFe2O3 (x = 0–15 mol%) have been prepared by the melt-quenching method. Elastic and structural properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo overlap method at 5 MHz and Fourier transform infrared (FTIR) spectroscopy, respectively. Both longitudinal and shear velocity showed a large increase of 3.40% and 4.68%, respectively, at x = 5 mol% before a smaller increase for x > 5 mol%. Interestingly, longitudinal modulus (L), shear modulus (G), bulk modulus (K) and Young's modulus (E) recorded similar trends with increase in Fe2O3. The initial large increases in shear and longitudinal velocity and related elastic moduli observed at x = 5 mol% are suggested to be due to structural modification which enhances rigidity of the glass network. FTIR analysis showed increase in bridging oxygen (BO) as indicated by the relative intensity of the TeO4 assigned peaks and increase in intensity of the FeO6 assigned peak (~ 451 cm? 1) which indicates that Fe acts as a modifier in the glass network. The increase in rigidity of the glass system is suggested to be due to the increase of BO together with the formation of strong covalent FeO bond. Quantitative analysis based on the bulk compression and ring deformation models showed that the kbc/kexp value decreased gradually from 2.41 (x = 0 mol%) to 2.02 (x = 15 mol%) which infers that the glass system became a relatively more open 3D network as Fe2O3 was increased.  相似文献   

13.
《Journal of Non》2005,351(6-7):523-529
Glasses doped either with chromium or manganese or with both chromium and manganese were melted from the raw materials and studied by UV–vis–NIR spectroscopy. The measurements were carried out at temperatures in the range from 25 to 800 °C. In the glasses doped with only one transition metal oxide, the intensity of the absorption lines decreases and the full width at half maximum increases with increasing temperatures. Simultaneously, the peaks were shifted to larger wave numbers. In glasses doped with both chromium and manganese, the same behaviour was observed up to a temperature of 600 °C. At larger temperatures, the absorption band at 27 500 cm−1 due to Cr6+ increases again, while the absorption band at 20 300 cm−1 caused by Mn3+ decreases more strongly than in glasses solely doped with manganese. The behaviour observed was explained by the redox reaction Cr6+ + 3Mn2+  Cr3+ + 3Mn3+ which is shifted to the left while increasing the temperature.  相似文献   

14.
The Eu3 +/Tb3 +/Tm3 + triply-doped glasses with the composition of CaO―Al2O3―B2O3―RE2O3 (RE = Eu,Tb,Tm) have been synthesized by melt quenching method. The photoluminescence of these Eu3 +/Tb3 +/Tm3 + triply-doped glasses (CaAlB:RE3 +) were studied and the emission spectra combining with blue, green and reddish orange bands were observed. Under 360 nm wavelength excitation the white light emission is achieved when the concentration (x) of Tm3 + in Ca0.931 ?xAlB:Eu3 +0.038,Tb3 +0.031,Tm3 +x glass is in the range of 0.0013-0.011 per mol matrix. In addition, the energy transfer (ET) between Tb3 + and Eu3 + ions in Eu3 +/Tb3 +/Tm3 + triply-doped glasses was validated and the electric dipole–dipole interaction is responsible for the ET process of Tb3 +  Eu3 + at low concentrations. Hence, the Eu3 +/Tb3 +/Tm3 + triply-doped aluminoborate glass could be a potential candidate for white LEDs.  相似文献   

15.
《Journal of Non》2007,353(11-12):1070-1077
The structural properties of xCr2O3–(40  x)Fe2O3–60P2O5, 0  x  10 (mol%) glasses have been investigated by Raman and Mössbauer spectroscopies, X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The Raman spectra show that the addition of up to 5.3 mol% Cr2O3 does not produce any changes in the glass structure, which consists predominantly of pyrophosphate, Q1, units. This is in accordance with O/P  3.5 for these glasses. The increase in glass density and Tg that occurs with increasing Cr2O3 suggests the strengthening of glass network. The Mössbauer spectra indicate that the Fe2+/Fetot ratio increases from 0.13 to 0.28 with increasing Cr2O3 content up to 5.3 mol%, which can be related to an increase in the melting temperature from 1423 to 1473 K. After annealing, the 10Cr2O3–30Fe2O3–60P2O5 (mol%) sample was partially crystallized and contained crystalline β-CrPO4 and Fe3(P2O7)2. The SEM and AFM micrographs of the partially crystallized sample revealed randomly distributed crystals embedded in a homogeneous glass matrix. EDS analysis indicated that the glass matrix was rich in Fe2O3 (39.6 mol%) and P2O5 (54.9 mol%), but contained only 5.5 mol% of Cr2O3. These results suggest that the maximum solubility of chromium in these iron phosphate melts is 5.5 mol% Cr2O3.  相似文献   

16.
《Journal of Non》2007,353(13-15):1354-1357
CuO-doped barium borophosphate glasses in a series of xCuO–(45  x)BaO–10B2O3–45P2O5 in molar ratio with x = 0–15 mol% were prepared by a melt-quenching technique. All the glasses had excellent thermal stability against crystallization. Glass transition temperature, thermal expansion coefficient and molar volume decrease with increasing CuO concentration. The linear relationship between the absorption coefficient and CuO concentration exists for a peak wavelength in the transitions of 2A1g  2B1g, 2B2g  2B1g, 2Eg  2B1g. The relationship between the properties and glass structure evaluated by Raman spectroscopy is discussed.  相似文献   

17.
Raman scattering spectra of Ga2S3–2MCl (M = K, Rb, Cs) glasses have been conducted at room temperature. Based on the analysis of the local co-ordination surroundings of Cs+ ions, the similarities and differences of Raman spectra for the glass Ga2S3–2CsCl and the bridged molecular GaCl3 were explained successfully. Through considering the effect of M+ ions on mixed anion units [GaS4?xClx] and bridged units [Ga2S6?xClx] and the corresponding microstructural model, the Raman spectral evolution of the Ga2S3–2MCl (M = K, Rb, Cs) glasses was reasonably elucidated.  相似文献   

18.
We report the results of a systematic study of the thermal and optical properties of a new family of tellurite glasses, TeO2–ZnO–BaO (TZBa), as a function of the barium oxide mole fraction and compare them with those of TeO2–ZnO–Na2O (TZN). The characteristic temperatures of this new glass family (glass transition, Tg, crystallization, Tx, and melting, Tm) increase significantly with BaO content and the glasses are more thermally stable (greater ΔT = Tx ? Tg) than TZN glasses. Relative to these, Raman gain coefficient of the TZBa glasses also increases by approximately 40% as well as the Raman shift from ~ 680 cm? 1 to ~ 770 cm? 1. The latter shift is due to the modification of the glass with the creation of non-bridging oxygen ions in the glass network. Raman spectroscopy allows us to monitor the changes in the glass network resulting from the introduction of BaO.  相似文献   

19.
《Journal of Non》2006,352(23-25):2657-2661
Germanate glasses were prepared by the melt-quenching method using an assembled hot-thermocoupler equipped in a sample chamber of a fluorescence spectrometer, and subsequently their luminescence and excitation spectra were measured. In the GeO2 glass, luminescence bands due to the Ge2+ center appeared at the central wavelengths of 300 and 395 nm, their excitation bands being at 250 and 330 nm, respectively. In the (100  x)GeO2  xMmOn glasses, for MmOn = B2O3 (x  50), SiO2 (x  40), and Al2O3 (x  2), the luminescence intensity and therefore the amount of the Ge2+ center increased with increasing the content of MmOn, where M(2n/m)+ ions (B3+, Si4+, and Al3+) have lower basicities than a Ge4+ ion. Contrarily, for MmOn = Li2O (x  30), Na2O (x  20), K2O (x  20), CaO (x  20), SrO (x  3), BaO (x  15), ZnO (x  20), Ga2O3 (x  10), Sb2O3 (x  20), Bi2O3 (15  x  25), TiO2 (x  3), and Nb2O5 (x  10), the luminescence intensity and the amount of the Ge2+ center rapidly decreased with increasing the amount of additives and disappeared, where M(2n/m)+ ions (Li+, Na+, K+, Ca2+, Sr2+, Ba2+, Zn2+, Ga3+, Sb3+, Bi3+, Ti4+, and Nb5+) have higher basicities than a Ge4+ ion.  相似文献   

20.
《Journal of Non》2006,352(38-39):4062-4068
Glasses with the base composition 16Na2O · 10CaO · 74SiO2 doped with copper and iron or copper and manganese were studied by high temperature UV–vis–NIR spectroscopy. The spectra exhibited distinct absorption bands attributed to the respective transition metal ions present (Cu2+, Fe2+, Fe3+, Mn3+). In glasses doped with only one polyvalent element, the absorption decreases linearly with increasing temperature, the absorption bands are shifted to smaller wave numbers and get broader. In glasses doped with two types of transition metals, the situation is the same up to a temperature of around 550 °C. At larger temperature, the Cu2+-absorption in glasses also co-doped with iron increases again, while in glasses doped with both copper and manganese the absorption is approximately the same as in glasses solely doped with copper. It is shown that this is due to redox reactions between polyvalent species. These reactions are frozen in at temperatures <550 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号