首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
二氧化硅(SiO2)气凝胶是一种拥有三维骨架网络结构的纳米多孔材料,具有高孔隙率、低密度和低热导率等许多独特的性能.但是由于二氧化硅气凝胶本身的脆性及高温稳定性差等原因,限制了其大规模应用.二氧化硅气凝胶的热力学性能与其内部的三维骨架和孔结构紧密相关,掌握二氧化硅气凝胶内部微结构演化规律与宏观性能的关联,是改善其热力学...  相似文献   

2.
An improved analytical model for the total thermal conductivity of fiber-loaded silica aerogels was developed based on the complex refractive index, size, orientation, volume fraction and morphology of the fibers and silica aerogel. A cubic array of spherical porous secondary nanoparticles and a modified parallel-series model were proposed to model the combined solid and gaseous thermal conductivities. An anomalous diffraction theory (ADT) was used to predict the fiber extinction coefficient. Five common fiber types in the composites were studied including amorphous SiO2 glass, silicon glass, common float glass, soda lime silica glass and borosilicate glass. The results show that the total extinction coefficient of the silica aerogel system is largest by loading with the common float glass fiber and lowest by loading with the soda lime silica glass among the five fiber types. The model provides theoretic guidelines for material designs with optimum parameters, such as the type, inclination angle, volume fraction and diameter of the fibers as well as the aerogel nanoparticle and pore sizes. The optimum fiber for improved thermal insulation should have a large spectral complex refractive index throughout the infrared region.  相似文献   

3.
采用正硅酸乙酯(TEOS)为硅原,以硅烷改性的埃洛石纳米管(HNTs)为增强相,利用CO2超临界干燥技术制备具有优良力学和隔热性能的HNTs/SiO2复合气凝胶.利用傅立叶红外光谱、扫描电镜、比表面积与孔径分析仪、万能试验机和导热率测量仪等手段对HNTs改性后的表面状态、HNTs/SiO2复合气凝胶的微观形貌、孔结构、力学和导热性能进行了测试分析.结果表明:改性后的HNTs均匀分散到二氧化硅气凝胶基体中,并与SiO2纳米颗粒实现良好的结合,HNTs/SiO2复合气凝胶呈三维网络结构,当HNTs含量为15wt;时,平均孔径为10.47 nm;随着HNTs含量的增加,复合气凝胶的力学性能不断增强,同时其导热系数也不断增大,当HNTs含量为15wt;时,HNTs/SiO2复合气凝胶的抗压强度为0.85 MPa,导热系数为0.024 W/mK.  相似文献   

4.
T.Y. Ng  J.J. Yeo  Z.S. Liu 《Journal of Non》2012,358(11):1350-1355
In this study, classical molecular dynamics with the well-known van Beest, Kramer and van Santen potential are used for the first time to investigate the solid thermal conductivity of silica aerogel. Aerogel samples at various densities are obtained through negative pressure rupturing of dense silica samples, and reverse non-equilibrium molecular dynamics is employed to determine the thermal conductivity at each density. Results indicate that a power-law fit of the thermal conductivity obtained varies almost linearly with density, where decreasing density and increasing porosity led to an almost linear decrease in thermal conductivity. This is reflective of the trend observed in experimental bulk sintered silica aerogel. The results also showed that the thermal conductivity is of the same order of magnitude as bulk sintered aerogel. The power-law fit of the results also accurately reflected the variation found in bulk sintered aerogel.  相似文献   

5.
Dengteng Ge  Lili Yang  Yao Li  JiuPeng Zhao 《Journal of Non》2009,355(52-54):2610-2615
Silica aerogel/epoxy composite was prepared by dry mixing hydrophobic aerogels with epoxy powders and heat pressing method. The composite materials show a serviceability temperature up to 250 °C with low thermal conductivity (0.11–0.044 W/m k) and hydrophobic property (water contact angle of 117–140°). Transmission electron microscope photos proved that part of silica aerogels nanopores had been immersed by epoxy. Based on this phenomenon, an immersion model was build up to study the effect of immersion on the thermal insulation and hydrophobic properties. In addition a thermal conductivity prediction equation of aerogel/polymer system was obtained and confirmed by comparing the experimental data.  相似文献   

6.
A stochastic computational model for the gelation of a sol is explained and tested for the case of neutral silica aerogels. The computational model produces the final structure of the sol after gelation, using two of the several physical phenomena occurring during gelation of sols. Diffusion, represented by Brownian motion, is modeled by a random walk, and chemical reactions are incorporated through a stochastic aggregation model using a probability function; the latter determined in terms of the processing conditions based on the knowledge of the cluster formation energies. The two phenomena are coupled by a Monte Carlo simulation. The analysis of the connected structure and its functionality is demonstrated for neutral silica aerogels. It is shown how the gelation process can be controlled to obtain different structures for different application requirements. The only parameters required by the model are the density and the processing conditions. The results of the model show that those parameters strongly affect the structure of the generated samples. Therefore, processing conditions could be selected to produce aerogels with structures tailored to specific applications, which would constitute a major achievement in aerogel fabrication.  相似文献   

7.
The experimental results on the microstructural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures have been reported. The aerogels were prepared with sodium silicate precursor, ammonium hydroxide catalyst, trimethylchlorosilane (TMCS) silylating agent, solvent mixture of methanol-isopropanol (MeOH/IPA) and various aprotic solvent mixtures namely, hexane and benzene (HB), hexane and toluene (HT), hexane and xylene (HX), heptane and benzene (HpB), heptane and toluene (HpT), heptane and xylene (HpX). The physical properties of the aerogels such as % of volume shrinkage, density, % of optical transmission, surface area, % of porosity, pore volume, thermal conductivity and heat capacities of the aerogels were studied. The hydrophobicity of the aerogels was studied by contact angle measurements. The HX and HpX aerogels have been found to be more hydrophobic (contact angle, θ > 155°) than the other aerogels. It has been observed that the % of weight increase is highest (1%) for the HT aerogels and lowest (0.25%) for HpX aerogels by keeping them at 70% humidity for 350 h. Further, the aerogels have been characterized by pore size distribution (PSD), Fourier transform infra red spectroscopy (FTIR) and thermogravimetric and differential thermal (TG-DGA) analysis and transmission electron microscopy (TEM) techniques. The results have been discussed by taking into account the surface tension, vapor pressure, molecular weight and chain length of the solvents. Low density (0.051 g/cc), hydrophobic (165°), transparent (85%), low thermal conductive (0.059 W/m K), low heat capacity (180 kJ/m3 K) and highly porous (97.38%) silica aerogels were obtained with HpX solvent mixture.  相似文献   

8.
Abstract

Silica aerogel-based hybrid composites containing three different polymers such as poly(styrene) (PS), poly(methyl methacrylate) (PMMA), and PS-co-PMMA were synthesized by two steps: sol-gel reaction to form vinyl silica aerogels and radical polymerization to combine the silica aerogels with the polymers. The reactions were confirmed using FTIR and FE-SEM, showing successful polymerization in the surface of the silica aerogel network. Incorporation of the polymers into the silica aerogel allows for the enhancement of thermal stabilities. From dielectric measurement, the polymer hybridization leads to an increase in the static dielectric constant, compared to bare silica aerogel.  相似文献   

9.
Low-density monolithic silica and hexylene-bridged polysilsesquioxane aerogels were chemical vapor deposition (CVD) treated with hexamethyldisilazane or hexachlorodisilane silylating agents producing TMS (trimethylsilane) or Si layers on the aerogel. Reinforcing the weak aerogels by controlled deposition process improved their compressive strength and preserved their properties characteristic of low-density aerogels. When the silica and hexylene-bridged polysilsesquioxane aerogels were CVD treated with hexamethyldisilazane, the compressive modulus more than doubled in some cases. However, when treating hexylene-bridged aerogels with hexachlorodisilane the compressive modulus increased six fold. Not only did CVD treatment of the aerogels improve the compressive modulus, but the low densities, high surface areas, high porosities, and the transparency of the aerogels were not significantly affected.  相似文献   

10.
The limiting constraint in a growing number of nano systems is the inability to thermally tune devices. Silica aerogel is widely accepted as the best solid thermal insulator in existence and offers a promising solution for microelectronic systems needing superior thermal isolation. In this study, thin-film silica aerogel films varying in thickness from 250 to 1280 nm were deposited on SiO2 substrates under a variety of deposition conditions. These samples were then thermally characterized using the 3ω technique. Deposition processes for depositing the 3ω testing mask to the sample were optimized and it was demonstrated that thin-film aerogel can maintain its structure in common fabrication processes for microelectromechanical systems. Results indicate that thin-film silica aerogel can maintain the unique, ultra-low thermal conductivity commonly observed in bulk aerogel, with a directly measured thermal conductivity as low as 0.024 W/m-K at temperature of 295 K and pressure between 0.1 and 1 Pa.  相似文献   

11.
Mixed-metal oxide aerogels for oxidation of volatile organic compounds   总被引:1,自引:0,他引:1  
Aerogels of 100% silica, 8 wt% Zr in silica, 5 wt% V in silica and 100% zirconia were synthesized and tested as oxidation catalysts in the temperature range of 300–700°C for destruction of volatile organic compounds. The silica-based aerogels were all amorphous and had surface areas above 600 m2/g after oxidation. The zirconia aerogel was crystalline with a relatively low surface area of 250 m2/g. As catalysts for oxidation (using O2 in He) of CH3OH to CO2, the zirconia aerogel exhibited the highest activity and best selectivity while the silica aerogel exhibited the poorest. Inclusion of Zr at levels as low as 8 wt% into the silica aerogel framework produced activities and selectivities which were very much like the zirconia aerogel. These properties have the impact of producing a Zr based catalyst with high activity, but with thermal stability afforded by Zr–silica mixtures.  相似文献   

12.
Gun-Soo Kim  Sang-Hoon Hyun   《Journal of Non》2003,320(1-3):125-132
An ambient drying process (1 atm, 270 °C) has been developed in order to synthesize window glazing coated with silica aerogel films. The aerogel film could be manufactured by this process of wet gel films obtained via a dip-/spin-coating of the silica sol on a glass slide. Before drying, the isoproponol solvent in wet gels was exchanged with n-heptane to minimize the drying shrinkage. The thickness, refractive index, and porosity of silica films were 0.16–10 μm, 1.08–1.09, and 80–84%, respectively. The transmittance of window glazing was over 90% and we could predict that the optimal thermal conductivity (0.2 W/(m K)) of the window glazing would be obtained at the aerogel thickness of 100 μm (0.016 W/(m K)).  相似文献   

13.
Ultralow density silica aerogels prepared with PEDS   总被引:1,自引:0,他引:1  
Xu Chao  Shen Jun  Zhou Bin 《Journal of Non》2009,355(8):492-780
This paper deals with the synthesis of ultralow density silica aerogels using polyethoxydisiloxanes (PEDS) as the precursor via sol-gel process followed by supercritical drying using ethanol solvent extraction. Ultralow density silica aerogels with 5 mg/cc of density were made for the molar ratio by this method. A remarkable reduction in the gelation time was observed by the effect of the catalyst NH4OH at room temperature. The microstructure and morphology of the ultralow density silica aerogels were characterized by the specific surface area, SBET, SEM, TEM and the pore size distribution techniques. The results show that the diameter of the silica particles is about 13 nm and the pore size of the silica aerogels is about several nm. The specific surface area of the silica aerogel is 339 m2/g and the specific surface area, pore volume and average pore diameter decrease with increasing density of the silica aerogel.  相似文献   

14.
A novel type of a furnace for Vertical-Gradient-Freeze growth VGF of semiconductors is introduced. The basic element - a silica aerogel crucible - allows us to detect the crystallisation front with a suitable IR-CCD-camera due to its transparency. The growth velocity and the temperature gradient ahead of the solid-liquid interface are directly obtained in an optical way from the experiment. This is demonstrated for the growth of InSb. The excellent thermal insulation properties of the aerogels lead to a nearly one-dimensional temperature field and a nearly planar crystallisation front.  相似文献   

15.
Preparation and characterization of monolithic alumina aerogels   总被引:1,自引:0,他引:1  
Alumina aerogels were prepared by a sol-gel method combined with the ethanol supercritical drying technique using aluminum tri-sec butoxide and nitric acid as the precursor and catalyzer respectively. This method affords high-surface-area alumina aerogel monoliths without the use of complexing agents. The structure and morphology of the aerogels were investigated by TEM, XRD, FTIR and BET techniques. The results confirmed that the as-prepared alumina aerogel possessed a network microstructure made up of pseudoboehmite fibers and a surface area of 690 m2/g. It was transformed to γ-Al2O3 after heat treatment at 800 °C without a significant loss in surface area. DMA analysis and hotdisk thermal analysis were performed to characterize the mechanical and thermal properties of the samples. The results indicated that the alumina aerogel was robust and exhibited excellent thermal insulating properties. The elastic modulus was up to 11.4 MPa after drying, which is the one of the highest modulus of alumina aerogels ever reported. The thermal conductivities at 30 °C and 400 °C were 0.028 W/mK and 0.065 W/mK respectively.  相似文献   

16.
《Journal of Non》2007,353(18-21):1785-1788
The structural properties of CoFe2O4–SiO2 highly porous nanocomposite aerogels have been investigated by X-ray Absorption Spectroscopy and Transmission Electron Microscopy techniques. The aerogels are obtained by supercritical drying of composite gels obtained using a two step procedure where fast gelation is achieved using urea in the second step. The formation of CoFe2O4 nanocrystals in the silica matrix begins after calcination at 750 °C of the parent aerogel and is complete after calcination at 900 °C, while the high porosity of the sample is mostly retained.  相似文献   

17.
Silica gels prepared by copolymerizing tetraethylorthosilicate with 3-aminopropyltriethoxy-silane were modified using polymer derived from toluene diisocyanate and dried under ambient pressure. The successful preparation of silica aerogels depended on the effective control of shrinkage during drying. The resulting material, polymer-modified silica aerogel, was then characterized by thermogravimetric analysis and uniaxial compression tests. Results indicated that the apparent elastic modulus and compressive strength of the polymer-modified silica aerogels decreased with increasing amounts of incorporated polymer because of decreasing shrinkage and density, while the strains at the surface cracking point and the final failure point increased significantly during compression tests. The strength and modulus of the silica skeleton could be calculated from the apparent strength and modulus of the silica aerogels respectively. It was interestingly shown that the elastic modulus of the silica skeleton of the silica aerogels increased because of the incorporated polymers, while the polymers had no effects on the compressive strength of the silica skeleton. In addition, the relationships between the apparent elastic modulus or the apparent compressive strength of the polymer-modified silica aerogels and their shrinkage were quantitatively expressed.  相似文献   

18.
The application of aerogels as drug delivery system was successfully demonstrated for silica aerogels previously. However, being biocompatible silica matrices are not biodegradable, which is a certain disadvantage for a number of pharmaceutically oriented applications. For these purposes biodegradable materials are beneficial. Supercritical drying of polysaccharide gels results in highly porous biodegradable aerogel matrices with large surface areas. Structural properties of the polysaccharide aerogels depend on the preparation method and chemical nature of the gel phase. In this work different polysaccharide precursors (starch, alginate) were used to produce aerogels, which later on were loaded with the drugs ibuprofen and paracetamol. Furthermore release kinetics was studied in vitro. Thereby it has been shown that the release rate depends primary on the properties of the matrix. The presented results demonstrate for the first time the high potential of polysaccharide aerogels for pharmaceutical applications.  相似文献   

19.
D. Carta  G. Navarra 《Journal of Non》2011,357(14):2600-2603
Structural information on a MnFe2O4-SiO2 nanocomposite aerogel and on the pure silica aerogel matrix were obtained by total X-ray scattering experiments. The total pair distribution function of the silica aerogel is in agreement with literature data on melt-quenched silica. The total pair distribution function of the nanocomposite contains the contribution of all the pair correlations of the atomic species making the interpretation more difficult. The difference curve obtained by subtracting the total pair distribution function of the matrix from that of the nanocomposite, allows to selectively study the structural environment of the nanoparticles.  相似文献   

20.
Ultrahigh-pore-volume carbon aerogels were synthesized by adding rigid silica nanoparticles to resorcinol-formaldehyde sols, followed by supercritical drying, pyrolysis and HF leaching. The presence of silica nanoparticles in polymer gels dramatically inhibits volume shrinkage and framework collapse during the supercritical drying and pyrolysis processes, resulting in the obtained carbon aerogels exhibiting very low bulk density and high pore volume. By changing the mass ratio of silica nanoparticles/resorcinol-formaldehyde resin, pore volumes of carbon aerogels can be tuned in the range of 2.8-6.0 cm3/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号