首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ITO thin films were deposited on quartz substrates by the rf sputtering technique using various rf power keeping the substrates at room temperature. The influence of rf power on the structural, electrical, optical and morphological properties was studied by varying the rf power in the range 50–350 W. X-ray diffraction results show an amorphous – crystalline transition with nano grains. At a power of 250 W, the ITO film showed preferential orientation along (4 0 0) peak. It is observed from the optical transmission studies that the optical band gap increased from 3.57 to 3.69 eV when the rf power was increased from 50 to 250 W. The resistivity value is minimum and grain size is maximum for the ITO film deposited at 250 W. The X-ray photoelectron spectroscopy (XPS), Energy dispersive X-ray (EDX) and Atomic force microscopy AFM results confirm that the ITO films are stoichiometric and the surface contained nano-sized grains distributed uniformly all over the surface. It can be concluded that the ITO film deposited at room temperature with 250 W rf power, can provide the required optical and electrical properties useful for developing optoelectronic devices at lower temperatures.  相似文献   

2.
《Journal of Non》2006,352(9-20):968-971
Microcrystalline silicon films are deposited at 165 °C by plasma enhanced chemical vapor deposition (PECVD) from silane, highly diluted in hydrogen–argon mixtures. Ar addition during the deposition allows to increase the crystallinity from 24% to 58% for 20 nm thick films. The final crystallinity for 350 nm thick films reaches 72% with an increase in the grain size. A further increase, still 80%, is provided by substrate pre-treatment using hydrogen plasma before the deposition process. Arsenic doped μc-Si films, deposited on previous optimized (5 W power and 1.33 mbar pressure) undoped films without stopping the plasma between the deposition of both layers, show high electrical conductivity up to 20 S cm−1.  相似文献   

3.
J.B. Chu  S.M. Huang  H.B. Zhu  X.B. Xu  Z. Sun  Y.W. Chen  F.Q. Huang 《Journal of Non》2008,354(52-54):5480-5484
Indium tin oxide (ITO) films were grown without external heating in an ambient of pure argon by RF-magnetron sputtering method. The influence of argon ambient pressure on the electro-optical properties of as-deposited ITO films was investigated. The morphology, structural and optical properties of ITO films were examined and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV–VIS transmission spectroscopy. The deposited ITO films with a thickness of 300 nm show a high transparency between 80% and 90% in the visible spectrum and 14–120 Ω/□ sheet resistance under different conditions. The ITO films deposited in the optimum argon ambient pressure were used as transparent electrical contacts for thin film Cu(In,Ga)Se2 (CIGS) solar cells. CIGS solar cells with efficiencies of the order of 7.0% were produced without antireflective films. The results have demonstrated that the developed ITO deposition technology has potential applications in thin film solar cells.  相似文献   

4.
《Journal of Non》2006,352(23-25):2311-2314
Indium oxide films were deposited by radio-frequency plasma enhanced reactive thermal evaporation (rf-PERTE). The combined use of rf power and oxygen pressure allowed the control of the crystallite size in the film, changing the optical and electrical properties. The films obtained have electrical resistivity ranging from 13.7 to 1.7 × 107 Ω cm. Transparent TFTs made with those films as semiconducting and conducting layers, respectively, present threshold voltages near 2 V and on/off ratios of 104.  相似文献   

5.
In order to contribute to the understanding of the optoelectronics properties of hydrogenated nanocrystalline silicon films, a detailed study has been conducted. Structural analysis (infrared absorption and Raman scattering spectroscopy), combined with optical measurements spectroscopy (optical transmission, photothermal deflection spectroscopy and photoconductivity) were used to characterize the films. The samples were elaborated by radio-frequency magnetron sputtering of crystalline silicon target, under a hydrogen (70%) and Argon (30%) gas mixture, at three different total pressures (2, 3 and 4 Pa) and varying substrate temperature (100, 150 and 200 °C). The results clearly indicate that the films deposited at 2 Pa are amorphous, while for 3 and 4 Pa nanocrystalline structures are observed. These results are discussed in the framework of the existing models.  相似文献   

6.
《Journal of Non》2006,352(23-25):2315-2318
Transparent undoped semiconductor indium oxide films were deposited by radio frequency (rf) plasma enhanced reactive thermal evaporation (rf-PERTE) of indium at low substrate temperature. It was experimentally verified that the variation of rf power density has a strong influence on the electrical and structural properties of the films. The thickness of the InOx films is of about 100 nm. Results show that InOx films show an average visible transmittance of about 85% and energy gap of about 2.6 eV. Structural and electrical conductivity measurements show that films are polycrystalline and there exists a linear variation of conductivity logarithm vs reciprocal of temperature. Electrical conductivity variation of 17.6 to 5.8 × 10−3 (Ω cm)−1 for films produced at rf power densities ranging from 3.9 to 78.1 mW cm−3 was obtained. This controllable semiconductor behavior can therefore satisfy the requirement of a particular application for these type of films.  相似文献   

7.
Amorphous tungsten-doped In2O3 (IWO) films were deposited from a metallic target by dc magnetron sputtering at room temperature. Both oxygen partial pressure and sputtering power have significant effects on the electrical and optical properties of the films. The as-deposited IWO films with the optimum resistivity of 5.8 × 10?4 Ω·cm and the average optical transmittance of 92.3% from 400 to 700 nm were obtained at a W content of 1 wt%. The average transmittance in the near infrared region (700–2500 nm) is 84.6–92.8% for amorphous IWO prepared under varied oxygen partial pressure. The mobility of the IWO films reaches its highest value of 30.3 cm2 V?1 s?1 with the carrier concentration of 1.6 × 1020 cm?3, confirming their potential application as transparent conductive oxide films in various flexible devices.  相似文献   

8.
F.A. Ferri 《Journal of Non》2012,358(1):58-60
This work focuses on the crystallization of amorphous germanium (a-Ge) thin films induced by manganese species. A series of Mn-containing a-Ge films ([Mn] ~ 0?3.7 at.% range) was deposited at 150 °C by the cosputtering technique. After deposition, all films were submitted to isochronal thermal annealing treatments up to 600 °C and analyzed by Raman scattering, optical transmission spectroscopy and electrical resistivity measurements. The experimental results indicate that: (a) Mn impurity lowers the crystallization temperature of a-Ge in ~ 100 °C, as confirmed by the Raman analyses, (b) the optical properties of the films are affected by both the insertion of Mn and the temperature of thermal treatment, with the optical bandgap staying in the range of ~ 0.7?1 eV, and (c) the electrical resistivity of the samples is also influenced by the Mn concentration and by the temperature of annealing, varying between ~ 1.0×101 and 1.6×104 Ω cm. These experimental observations were systematically studied and the possible reasons associated to them are presented and discussed.  相似文献   

9.
Two series of hydrogenated silicon thin films were deposited by the rf-magnetron sputtering (RFMS) at relatively low growth temperatures (Ts = 100 °C), in order to use the new generation of substrates sensitive to elevated temperatures. The effect of the argon gas diluted in hydrogen, on the optical and on the structural properties was carefully investigated by means of optical transmission (OT) measurements, Fourier transform infrared spectroscopy and spectroscopic ellipsometry (SE) technique. The results of this investigation suggest the existence of a threshold dilution around a gas mixture of argon (40%) and hydrogen (60%) for which the crystallization occurs, even at low deposition temperatures. The difference between the amorphous and the crystallized structures is well revealed by the OT and the IR absorption results, and strongly confirmed by the SE ones. The production of Si crystallites in the plasma as means of producing nanocrystalline by RFMS is suggested.  相似文献   

10.
《Journal of Non》2006,352(23-25):2343-2346
Zinc oxide thin films were deposited on silicon and corning-7059 glass substrates by plasma enhanced chemical vapor deposition at different substrate temperatures ranging from 36 to 400 °C and with different gas flow rates. Diethylzinc as the source precursor, H2O as oxidizer and argon as carrier gas were used for the preparation of ZnO films. Structural and optical properties of these films were investigated using X-ray diffraction, reflection high energy electron diffraction, atomic force microscopy and photoluminescence. Highly oriented films with (0 0 2) preferred planes were obtained on silicon kept at 300 °C with 50 ml/min flow rate of diethylzinc without any post annealing. Reflection high energy electron diffraction pattern also showed the crystalline nature of these films. A textured surface with rms roughness ∼28 nm was observed by atomic force microscopy for the films deposited at 300 °C. A sharp peak at 380 nm in the PL spectra indicated the UV band-edge emission.  相似文献   

11.
Hot-wire chemical vapor deposition is employed for the deposition of amorphous and microcrystalline silicon layers at substrate temperature kept below 100 °C with the aid of active cooling of the substrate holder. The hydrogen dilution is varied in order to investigate films at the amorphous-to-microcrystalline transition. While the amorphous layers can be produced with a reasonably low defect density as deduced from subgap optical absorption spectra and a good photosensitivity, the microcrystalline layers are of a lesser quality, most probably due to a decrease of crystallinity during the film growth. In the amorphous growth regime, the Urbach energy values decrease with increasing hydrogen dilution, reaching a minimum of 67 meV just before the microcrystalline threshold. By varying the total gas pressure, the growth rate of the films is changed. The lowest deposition rate of this study (0.16 nm/s) produced the amorphous sample with the highest photoresponse (1 × 106).  相似文献   

12.
We have realized micromorph tandem solar cells on Asahi U-type TCO-covered glass substrates. The intrinsic layers of both amorphous top cell and microcrystalline bottom cell are grown by very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) at 100 MHz at low substrate temperature (150 °C). For the bottom cell different growth regimes have been explored by changing both chamber pressure and plasma power. The effect of the structural composition of the microcrystalline absorber layer on the electrical parameters of the device has been investigated. High short circuit current density and constant FF in a wide silane concentration range are obtained when using large power to pressure ratio (0.5 W/Pa). However, low open circuit voltage is generally found in this regime. The largest VOC values are found at 67 Pa and power to pressure ratio of 0.3 W/Pa, where the highest efficiency (11.1%) is reached. An evaluation of device stability has been done by exposing the tandem solar cells to white light (AM 1.5-like spectrum) for 200 h.  相似文献   

13.
ZnO films were prepared by post deposition thermal oxidation in the ambient atmosphere of metallic Zn films (d = 100–170 nm) vacuum evaporated onto unheated indium tin oxide (ITO)-coated glass substrates. To study the effect of the substrate position during the Zn film deposition on the microstructure and optical properties (transmittance, reflectance and absorbance) of as obtained ZnO films, two set of Zn samples simultaneously deposited onto horizontally and obliquely arranged substrates were prepared. The as obtained ZnO films had a polycrystalline wurtzite structure, those obtained from normally deposited Zn films having a higher c-axis preferred orientation and a lower optical transmittance in the visible wavelength range. The optical band-gap was found to be of 3.14 eV for oxidized normally deposited virgin Zn films and of 3.16 eV for those obliquely deposited.  相似文献   

14.
Transparent and conductive/semiconductive undoped indium oxide (InOx) thin films were deposited at room temperature. The deposition technique used is the radio frequency (rf) plasma enhanced reactive thermal evaporation (rf-PERTE) of indium (In) in the presence of oxygen. The influence of oxygen partial pressure on the properties of these films is presented. The oxygen partial pressure varied between 3 × 10?2 and 1.3 × 10?1 Pa. Undoped InOx films, 100 nm thick, deposited at the oxygen partial pressure of 6 × 10?2 Pa show a conductive behaviour, exhibit an average visible transmittance of 81%, a band gap around 2.7 eV and an electrical conductivity of about 1100 (Ω cm)?1. For oxygen pressures greater than 6 × 10?2 Pa, semiconductive films are obtained, maintaining the visible transmittance. Films deposited at lower pressures are conductive but dark. From XPS data, films deposited at an oxygen partial pressure of 6 × 10?2 Pa show the highest amount of oxygen in the film surface and the lowest ratio between oxygen in the oxide crystalline and amorphous phases.  相似文献   

15.
《Journal of Non》2005,351(49-51):3671-3676
Hydrogenated carbon nitride (a-CN:H films) were deposited on n-type (1 0 0) silicon substrates making use of dual direct current radio frequency plasma enhanced chemical vapor deposition (DC-RF-PECVD), at working pressure of 2–20 Pa, using a mixed gas of CH4 and N2 as the source gas. The growth rate, composition, bonding structure of the deposited films were characterized by means of XPS and FTIR, and the mechanical properties of the deposited films were investigated by nano-indentation test. It was found that the parameters for the DC-RF-PECVD process had significant effects on the growth rate, structure and properties of the deposited films. The growth rate of the deposited films increased at first with increasing deposition pressure, then saturated with further increase of the deposition pressure. The N/C ratio inside the deposited films increased with increasing working pressure except that it was as much as 0.50 at a working pressure of 5.0 Pa. The nano-hardness of the films decreased with increasing deposition pressure. CN radicals were remarkably formed in the deposited films at higher pressures, and their contents are related to the nitrogen concentrations in the deposited films.  相似文献   

16.
Undoped and 5%(Mn, In)-doped SnO2 thin films were deposited on Si(1 0 0) and Al2O3 (R-cut) by RF magnetron sputtering at different deposition power, sputtering gas mixture and substrate temperature. X-ray reflectivity was used to determine the films thickness (10–130 nm) and roughness (~1 nm). The combination of X-ray diffraction and Mössbauer techniques evidenced the presence of Sn4+ in an amorphous environment, for as-grown films obtained at low power and temperature, and the formation of crystalline SnO2 for annealed films. As the deposition power, substrate temperature or O2 proportion are increased, SnO2 nanocrystals are formed. Epitaxial SnO2 films are obtained on Al2O3 at 550 °C. The amorphous films are quite uniform but a more columnar growth is detected for increasing deposition power. No secondary phases or segregation of dopants were detected.  相似文献   

17.
We have investigated the effect of Ar dilution on the deposition process of intrinsic nc-Si:H (hydrogenated nanocrystalline silicon) thin films used as active layers of top-gate TFTs, in order to improve the TFTs performances. The nc-Si:H films were deposited by plasma enhanced chemical vapor deposition (PECVD) at low temperature (165 °C) and the related TFTs were fabricated with a maximum process temperature of 200 °C. During the nc-Si:H films deposition, the SiH4 fraction and the total flow of the diluting gases Ar + H2 mixture was kept constant, H2 being substituted by Ar. We have pointed out the active role played by the metastable states of excited Ar atoms in both the dissociation of SiH4 and H2 by quenching reactions in the plasma. The role of the atomic hydrogen during the film deposition seems to be promoted by the addition of argon into the discharge, leading to an increase of the deposition rate by a factor of about three and an enhancement of the crystalline quality of the nc-Si:H films. This effect is maximized when the Ar fraction in the Ar + H2 gases mixture reaches 50%. The evolution with Ar addition of the carriers mobility of the related TFTs is closely connected to the evolution of the crystalline fraction of the intrinsic nc-Si:H film. Mobilities values as high as 8 cm2 V?1 s?1 are obtained at the Ar fraction of 50%. For higher Ar fractions, the fall of the mobility comes with a degradation of the IDVG transfer characteristics of the processed TFTs due to a degradation of the nc-Si:H films quality. OES measurements show that the evolution of the Hα intensity is closely connected to the evolution of the deposition rate, intrinsic films crystalline fraction and TFTs mobility, providing an interesting tool to monitor the TFTs performances.  相似文献   

18.
《Journal of Non》2007,353(22-23):2289-2294
Different rf-power and chamber pressures have been used to deposit boron doped hydrogenated silicon films by the PECVD method. The optoelectronic and structural properties of the silicon films have been investigated. With the increase of power and pressure the crystallinity of the films increases while the absorption decreases. As a very thin p-layer is needed in p–i–n thin film solar cells the variation of properties with film thickness has been studied. The fraction of crystallinity and thus dark conductivity vary also with the thickness of the film. Conductivity as high as 2.46 S cm−1 has been achieved for 400 Å thin film while for 3000 Å thick film it is 21 S cm−1. Characterization of these films by XRD, Raman Spectroscopy, TEM and SEM indicate that the grain size, crystalline volume fraction as well as the surface morphology of p-layers depend on the deposition conditions as well as on the thickness of the film. Optical band gap varies from 2.19 eV to 2.63 eV. The thin p-type crystalline silicon film with high conductivity and wide band gap prepared under high power and pressure is suitable for application as window layer for Silicon thin film solar cells.  相似文献   

19.
《Journal of Crystal Growth》2003,247(3-4):497-504
Structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis from zinc acetate (Zn(CH3COO)2 2H2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature. The growth of the films present three regimes depending on the substrate temperature, with increasing, constant and decreasing growth rates at lower, middle, and higher-temperature ranges, respectively. Growth rate higher than 15 nm min−1 can be achieved at Ts=543 K. ZnO film morphological and electrical properties have been related to these growth regimes. The films have been characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy.  相似文献   

20.
C.Y. Lam  K.H. Wong 《Journal of Non》2008,354(35-39):4262-4266
Mn-doped cuprous oxide Cu2?xMnxO (CMO), where x = 0.03, is a p-type diluted magnetic semiconductor (DMS) with Curie temperature above room temperature [M. Wei, N. Braddon, et al., Appl. Phys. Lett. 86 (2005) 0725141; Y.L. Liu, S. Harrington, et al., Appl. Phys. Lett. 87 (2005) 222108]. We have grown CMO (x = 0.03) thin films of about 200 nm thick on n-type semiconducting (0 0 1)Nb–SrTiO3(NSTO) single crystal substrates by pulsed laser deposition. Cubic crystalline phases of CMO layers were obtained in a narrow deposition pressure window of about 20 mTorr at growth temperature of 650 °C. X-ray diffraction and TEM studies of these heterostructures reveal a cube-on-cube epitaxial relationship of [CMO]001/[NSTO]001. All the oxide p–n junctions with the size of 500 × 500 μm were fabricated by the shadow masking technique. These junctions show highly asymmetric IV characteristics. The rectification ratio at room temperature is about 103 at ±2 V. Leakage current density of 10?4 A cm?2 at ?1 V is observed. No apparent junction breakdown is recorded at reverse bias voltages down to ?5 V. From the 1/C2V plots, the forward bias turn on voltage is ~1.4 V. Clear junction current rectifying property is maintained at up to 200 °C. Our results have demonstrated that epitaxial CMO films can be fabricated on lattice matched cubic substrates. They are suitable DMS for above room temperature spintronic junction applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号