首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
《Journal of Non》2007,353(22-23):2280-2288
In this work, polycyclic silazane/siloxane networks bearing SiO and SiN bonds were synthesized, via hydrosilylation reaction, from cyclotrisilazane, [CH2CH(CH3)SiNH]3, and cyclotetrasiloxane, [CH3(H)SiO]4, with different SiH:Sivinyl molar ratios. The resulting polymers were pyrolyzed up to 1000 °C, in N2 atmosphere, producing SiOCN glasses. The polymer-to-ceramic transformation was studied by thermogravimetry (TG), Fourier transform infrared spectroscopy (FTIR), and chemical analysis. The 1000–1500 °C, high temperature structural evolution was also studied using X-ray diffraction (XRD) and FTIR. The hydrosilylation reaction produced ethylenic bridge crosslinked polymeric precursors with good thermal stability. The SiOCN glasses obtained with ceramic yields higher than 80 wt% showed spectra absorptions of SiN, SiO, and SiC bonds in FTIR. The XRD patterns of the products obtained at 1500 °C displayed diffraction peaks characteristic of β-SiC and a broad halo centered at 22° (2θ), due to the amorphous silica phase. β-SiC diffraction peaks in the XRD patterns were more intense for the precursor richer in polysiloxane units, although absorptions of SiN, SiC, and SiO bonds were also observed in the FTIR spectra. Thus, the final materials were characterized as SiC/SiOCN composites in nano/amorphous phases.  相似文献   

2.
Ferrimagnetic glass–ceramics were prepared in the systems Fe2O3 CoO MnO2 (S1), Fe2O3 NiO MoO3 (S2) and Fe2O3 CoO V2O5 (S3). Small amount of H3BO4 was added to make the melting process easier. The samples were characterized using DTA, XRD, TEM and EDX. Sequence of crystallization was studied by applying heat-treatment at 800 and 1000 °C for 4 h. CoFe2O4 with crystallite sizes of ≈ 14–20 nm was successfully prepared beside FeCoOBO3 and Co3BO5 in S1. NiMoO4, (FeNi2)O2(BO3) and NiO with crystallite size ≈ 56–79 nm were crystallized in S2. CoFe2O4, FeCoOBO3 and Co3BO5 with crystallite size ≈ 6–8 nm were crystallized in S3. Magnetic hysteresis cycles were analyzed with a maximum applied field of 20 kOe at room temperature. From the obtained hysteresis loops Ms records higher values for S1 and S3 and lower value for S2, while coercivity reach maximum for S2. The variable, magnetic, data range gives a wide range for different applications.  相似文献   

3.
The changes observed in the IR and ESR spectra of the xV2O5(1 ? x)[0.8P2O5 ? 0.2BaO] glass system with 0  x  50 mol% show that vanadium oxide acts as a network modifier at low concentration (x  5 mol%) and as a network former for high content (x  10 mol%). Thus the IR bands belonging to the phosphate groups are strongly reduced except the specific bands of the short chain phosphate units due to the phosphate network depolymerization and the spectra are dominated by the vibrations characteristic for POP, POV and VOV linkages. At the same time the changes observed in the ESR spectra of these glasses are explained supposing the superposition of two signals, one with a well-resolved hyperfine structure typical for isolated V4+ ions and a broad line characteristic for clustered ions. The line width dependence versus V2O5 content shows that dipole–dipole interactions exist between vanadium ions until x = 5 mol% and the superexchange interactions prevail at high content (x > 10 mol%).  相似文献   

4.
SiTiOC mesoporous thin films have been obtained by metalorganic chemical vapor deposition (MOCVD) using titanium iso-propoxide (TIP) and tetraethylorthosilicate (TEOS) as starting precursors. The influences of both carrier gas and deposition temperature on the properties of the produced films were extensively studied. The low-angle XRD analysis confirms that, all produced films under different conditions (gas type and temperature) have the mesoporous structure. However, the deposition temperature was found to be much effective in controlling both morphology and composition of the final films than the type of carrier gas. The morphology of the produced films was totally converted from spherical shape-like nanoparticles at 700 °C to lengthy at higher temperature of 1000 °C. The SEM-EDX investigations proved that the composition of the produced films was composed of SiTiOC structure system. The PL analysis has demonstrated along with FT-IR data that all the deposited films at various deposition parameters were composed mainly of SiO2, SiOC, SiC, TiO2 and TiOC bond structures and most probably nanocomposite SiTiOC system thin films.  相似文献   

5.
《Journal of Non》2006,352(26-27):2917-2920
Our previous studies have reported the excitation energy dependence of the 2.7 and 4.3 eV photoluminescence (PL) bands in oxygen deficient silica glass at low temperature (∼20 K). An oxygen vacancy (O3SiSiO3) was thought to be the origin of the two PL bands. In order to verify the origin of the 2.7 and 4.3 eV PL bands in silica glass, we measured the PL band of various thermally heat treated silica glasses. In the sample after heat treatment, we did not observe the 4.3 eV PL band, though we did observe the 2.7 eV PL band. These results suggest that these two PL bands do not have a common origin.  相似文献   

6.
Tingkun Gu 《Journal of Non》2012,358(16):1892-1896
The composition dependencies of local structure and electronic structure, as well as the electric resistivity of liquid indium-antimony alloys have been investigated by the first-principles molecular dynamics simulations. It is shown that the variations of InIn, InSb and SbSb coordination tendency and the projected density of states of In and Sb in liquid InxSb1 ? x depend on the Sb concentration, and electric resistivity of liquid indium-antimony also reveals a regular change trends as a function of Sb concentration. Further analysis confirmed that there are explicit relationships between the short range structural parameters and electrical resistivities in liquid InxSb1 ? x.  相似文献   

7.
Donglin Li  Liangying Zhang  Xi Yao 《Journal of Non》2008,354(15-16):1774-1779
Sol–gel derived transparent glasses are of technological interest because of its precisely controlled composition for multicomponent glasses at low temperature processing. The present work demonstrates a new and simple methodology for preparing transparent multicomponent oxide gels by incomplete hydrolysis of alkoxides. Through this processing, a small quantity of organic agencies resulted from incomplete hydrolysis of alkoxides self-disperses in inorganic oxide network, and thus control the formation of the monolith gel free of cracks. Specially, K2OTiO2P2O5SiO2 gel monoliths have been synthesized through this route. The gels transformed into transparent K2OTiO2P2O5SiO2 inorganic amorphous solids after heat treatment above 450 °C. This approach could be applied to many other multicomponent oxides.  相似文献   

8.
M. Subhadra  P. Kistaiah 《Journal of Non》2011,357(19-20):3442-3446
Glasses with composition 15 Li2O15K2O10Bi2O3(60 ? x) B2O3: xV2O5 where x = 1, 3, 5, 7, and 9 mol% are prepared by normal melt-quench technique. Characterization of the prepared samples is done using X-ray diffraction, density and differential scanning calorimetry. The density and molar volume are found to increase with increasing x whereas the glass transition temperature decreases. Electron paramagnetic resonance spectra of the prepared samples are recorded using EPR-spectrometer operating in the X-band frequency. The resonance spectra are well resolved for x  5 mol% and the intensity of the resonance peak is found to increase with increasing x. The values of spin-Hamiltonian parameters (SHP) and molecular orbital coefficients are evaluated. From the values of SHPs it is concluded that V4+ ions in the present glass system exist as vanadyl ions in octahedral co-ordination with tetragonal compression. It is observed that the SPHs depend slightly on the relative concentration of V2O5. Further, the theoretical optical basicity of the glasses has also been evaluated and it is observed that the changes in optical basicity values are in accordance with the changes in SHPs.  相似文献   

9.
We investigate the network structures of LaSiAlO glasses by 29Si magic-angle-spinning (MAS) nuclear magnetic resonance (NMR). Their compositions span most of the glass-forming region of the ternary La2O3Al2O3SiO2 system at 1600 °C. The 29Si NMR resonances narrow and become progressively deshielded when Al substitutes for Si in the network, as well as for increasing La-content of the glass, which leads to network depolymerization. We compare experimental and calculated center of gravities of the 29Si NMR peaks, the latter generated from different simplified models for the distributions of Al and Si as well as bridging oxygen (BO) and non-bridging oxygen (NBO) atoms over the networks. The data do not permit accurate quantifications and may only be interpreted in limiting scenarios. However, they indicate that both distributions are essentially randomized, implying a clear deviation of the Al/Si ordering from that according to a Loewenstein Al-avoidance, coupled with a nearly uniform partitioning of the NBO atoms between Al and Si tetrahedra.  相似文献   

10.
The effect of lead oxide (PbO) on optical properties of Dy3+-doped PbO–H3BO3–TiO2–AlF3 (LBTAFDy) glasses is investigated. The LBTAFDy glasses were prepared with different PbO contents ranging from 30 to 60 mol%. The Judd–Ofelt intensity parameters (Ωλ = 2, 4, 6) are obtained by the least square fit analysis. It is found that the Ω2 parameter and yellow-to-blue intensity ratio (Y/B) of the Dy3+ emission depend on the PbO content in LBTAFDy glass. The structural asymmetry around the Dy3+ ion and the DyO covalency are responsible for the changes in Ω2 parameter and Y/B ratio. The variation of decay time of 4F9/2 emission level with the PbO content also supports the changes in structural asymmetry and DyO covalency in LBTAFDy glass.  相似文献   

11.
Using ab initio calculations on 108 atoms pure- and Ge-doped (2.8 mol%) silica-based supercells, we performed a statistical study on the electronic structure and energetic contribution of neutral oxygen vacancies, also named Oxygen Deficient Centers (ODCs). All the 72 oxygen sites in the amorphous silica (a-SiO2) cell were considered as possible candidates for the formation of the vacancies leading to study 72 different Si-ODCs (SiSi bond) and 144 Ge-ODCs (GeSi bond). The distributions of structural parameters and formation energies of the ODCs were evaluated through Density Functional Theory calculations. The obtained parameters showed a wide distribution that can be mainly associated with the differences in the local environments surrounding the point defects. We show that the formation energies of Si and Ge-ODCs generated from the same oxygen site of our supercell are correlated. Moreover, the local asymmetry around the SiGe or GeSi bond can also affect their formation energies, providing a strong evidence for the influence of short-range environment on the ODC generation efficiency.  相似文献   

12.
《Journal of Non》2006,352(6-7):690-694
A series of zinc tellurite glasses, containing up to 40 mol% ZnCl2 and doped with 1–10 mol% ErCl3, was prepared by melting and casting and their structure was analyzed by polarized Raman and variable incidence infrared reflection spectroscopies. Kramers–Kronig analysis of the infrared reflectivity led to the identification of the vibrational mode components. The Raman spectra are dominated by an intense, depolarized boson peak at ∼45 cm−1 and a high frequency, polarized peak at ∼767 cm−1. The introduction of ZnCl2 and ErCl3 modifiers led to a blue shift of the high frequency peak, while the intensity of the boson peak was found to increase continuously with the Er3+ content. It is shown that the erbium and zinc compounds both break TeOTe bonds, introducing non-bridging chlorine species, connected mostly to the zinc atoms.  相似文献   

13.
We present experimental results for hydrogenated amorphous and microcrystalline silicon (a-Si:H and μc-Si:H) thin films deposited by PECVD while using a voltage waveform tailoring (VWT) technique to create an electrical asymmetry in the reactor. VWT dramatically modifies the mean ion bombardment energy (IBE) during growth, and we show that for a constant peak-to-peak excitation voltage (VPP), waveforms resembling “peaks” or “valleys” result in very different material properties. Using Raman scattering spectroscopy, we show that the crystallinity of the material depends strongly on the IBE, as controlled by VWT. A detailed examination of the Raman scattering spectra reveals that the narrow peak at 520 cm? 1 is disproportionately enhanced by lowering the IBE through the VWT technique. We examine this effect for a range of process parameters, varying the pressure, hydrogen–silane dilution ratio, and total flow of H2. In addition, the SiHX bonding in silicon thin films deposited using VWT is characterised for the first time, showing that the hydrogen bonding character is changed by the IBE. These results demonstrate the potential for VWT in controlling the IBE during thin film growth, thus ensuring that application-appropriate film densities and crystallinities are achieved, independent of the injected RF power.  相似文献   

14.
In this work 316L stainless steel substrates were coated with sol–gel derived films by means of the dip-coating technique. Titanium isopropoxide and ethanol were used as chemical precursor and solvent, respectively. The dip-coating step was performed using withdrawal speeds of 6 mm/min, 30 mm/min, and 60 mm/min. Next, the samples were heat treated in air for 30 min at 100 °C, 300 °C, and 400 °C. The processed composites were examined by FTIR and UV–vis spectroscopies. We observed that the materials prepared in this work can exhibit a variety of colors depending on the heat treatment temperature, withdrawal speed, and precursor:solvent molar ratio used in their processing. It is an important finding since this behavior could lead to architectural application of these materials. We believe that the changes observed in the UV–vis spectra and the colors of these samples could be related to the variation of the coating thickness as the processing conditions were modified. FTIR tests revealed that the ratio between the intensities of features ascribed to hydroxyl groups and TiO bonds decreased as the heat treatment temperature was increased. On the other hand, the ratio between bands related to TiOTi and TiO bonds decreased when the heating temperature was raised from 100 °C to 300 °C.  相似文献   

15.
The local structure around neodymium in an aluminoborosilicate glass bearing 3.6 mol% Nd2O3 is studied by optical absorption spectroscopy and EXAFS at the Nd LIII- and K-edges. The influence of the nature of alkalis (M+ = Li+, Na+, K+, Rb+, Cs+) and alkaline-earths (M2+ = Mg2+, Ca2+, Sr2+, Ba2+) on the coordination sphere of Nd3+ ions in the glass is particularly investigated. The Nd3+ sites are well-defined with NdO mean distances of 2.46 ± 0.03 Å, whatever the alkali and alkaline-earth ion type except Li+ and Mg2+, for which glasses exhibit slightly more disordered Nd sites and longer NdO distances (2.49 ± 0.03 Å). Using bond valence considerations, a model is proposed for the Nd site, and consists in 7–8 non-bridging oxygens (NBO), every NBO being charge compensated by 2–3 alkalis and alkaline-earths. The NdO mean distance is adjusted according to the mean field strength of these cations, to avoid overbonding of the NBO’s. A glass series with varying Ca2+/Na+ concentration ratio shows that Nd3+ cations are able to maintain this average coordination site even at high alkaline-earth content.  相似文献   

16.
《Journal of Non》2007,353(5-7):522-525
The kinetics of E′ centers ( Si) induced by 4.7 eV pulsed laser irradiation in dry fused silica was investigated by in situ optical absorption spectroscopy. The stability of the defects, conditioned by reaction with mobile hydrogen of radiolytic origin, is discussed and compared to results of similar experiments performed on wet fused silica. A portion of E′ centers and hydrogen are most likely generated by laser-induced breaking of Si–H precursors, while an additional fraction of the paramagnetic centers arise from another formation mechanism. Both typologies of E′ centers participate in the reaction with H2 leading to the post-irradiation decay of the defects. This annealing process is slowed down on decreasing temperature and is frozen at T = 200 K, consistently with the diffusion properties of H2 in silica.  相似文献   

17.
The purpose of the study is to investigate the influence of the precursors, pH of the solution and temperature on the gelation and structure evolution of the samples from the SiO2-P2O5 system. Tetraethoxysilane (TEOS) was used as precursor for SiO2 and triethylphosphate (TEP) or phosphoric acid for P2O5, together with water as reagent for hydrolysis reaction and ethylic alcohol as solvent. The pH of the sols was modified by adding hydrochloric acid, in the case of TEP and by adding ammonia, in the case of H3PO4. The samples have been prepared starting from P2O5/SiO2 = 1/10 and 1/5 molar ratio, H2O/TEOS = 1; 2; 3 mass ratios and C2H5OH/TEOS = 1 mass ratio. We prepared silico-phosphate samples in the 1.5–5 pH domain and we observed that in all the cases, the lowest gelation time was found in the 3.5–4.5 pH range. We found that for the same pH value samples prepared with H3PO4 had a lower gelation time (few days) by comparison with the samples prepared with TEP (weeks), explainable by the low rate of the hydrolysis and condensation reactions of TEP. When the amount of water was increased, the gelation time increased in the case of samples prepared with H3PO4 and it was not significantly changed in the case of the samples prepared with TEP. The increasing of the solution temperature up to 40–41 °C yielded a decreasing of the gelation time (hours), especially for the samples prepared with H3PO4 by comparison with those prepared using TEP. In all the cases, the increased amount of water resulted in an increasing of the gelation time, even the temperature was raised. FTIR and Raman spectroscopy characterization aimed at getting information about the structural changes in the case of the samples dried in air and also for those heated at 100 °C, 300 °C, 600 °C and 900 °C. Vibration modes specific for SiOEt, SiOH, hydrogen bonds, H2O and combined vibrations have been observed, which are in agreement with those revealed in literature data. 31P and 29Si MAS NMR spectra gave interesting information about first surrounding of P and Si ions meaning the type and proportion of Q species and their evolution starting from the room temperature up to 900 °C.  相似文献   

18.
S. Rada  A. Dehelean  E. Culea 《Journal of Non》2011,357(16-17):3070-3073
Glasses in the xEu2O3·(100-x)[4TeO2·PbO2] system where 0  x  50 mol% have been prepared using the melt quenching method. The influence of europium ions on the structure of lead–tellurate glasses has been investigated using density measurements, FTIR and UV–VIS spectroscopy. Structural changes produced by increasing the rare earth concentration were followed.The europium and lead ions show a preference towards [TeO3] structural units causing a deformation of the TeOTe linkages. Structural changes inferred by analyzing the band shapes of IR spectra revealed that the increase of the Eu+ 3 content causes the intercalation of [EuOn] entities in the [TeO4] chain network. The excess of oxygen can be supported into the glass network by the formation of [PbOn] and [EuOn] structural units.The UV–VIS spectroscopy data show that europium ions enter the glass matrix in the Eu2+ and Eu3+ valence states, the last being predominant in the studied glasses. The Pb+ 2 ions produce strong absorption in the ultraviolet domain.  相似文献   

19.
Alternating differential scanning calorimetric (ADSC) studies have been performed to understand the thermal behavior of bulk GexSe35?xTe65 glasses (17 ? x ? 25); it is found that the glasses with x ? 20 exhibit two crystallization exotherms (Tc1 & Tc2). On the other hand, those with x ? 20.5, show a single crystallization reaction upon heating. The exothermic reaction at Tc1 has been found to correspond to the partial crystallization of the glass into hexagonal Te and the reaction at Tc2 is associated with the additional crystallization of rhombohedral GeTe phase. The glass transition temperature of GexSe35?xTe65 glasses is found to show a linear but not-steep increase, indicating a progressive, but a gradual increase in network connectivity with Ge addition. It is also found that Tc1 of GexSe35?xTe65 glasses with x ? 20, increases progressively with Ge content and eventually merges with Tc2 at x  20.5 (〈r = 2.41); this behavior has been understood on the basis of the reduction in TeTe bonds of lower energy and increase in GeTe bonds of higher energy, with increasing Ge content. Apart from the interesting composition dependent crystallization, an anomalous melting behavior is also exhibited by the GexSe35?xTe65 glasses.  相似文献   

20.
《Journal of Non》2007,353(11-12):1134-1140
Phosphate glasses based on xNa2O0.5P2O5(0.5−x)GeO2 (0.0  x  0.5) mol%, were prepared and their structures were characterized by magic angle spinning (MAS) nuclear magnetic resonance (NMR), Raman and IR spectroscopy techniques. It was found that the phosphate network of these glasses is composed of middle (Q2) and branching (Q3) phosphate tetrahedra, whereas germanium part in the network is composed of three- or four-membered GeO4 tetrahedral rings. It was also found that the germanium tetrahedral are randomly connected to either Q2 or Q3 phosphate units in the network. The glass network, especially the Q2 units can be modified by the presence of Na ions. This modification is primarily associated with the phosphate. It is found that these glasses behave as if they are formed from a solution of GeO2 and sodium–phosphate glass with various GeO4 units and the Q2 and Q3 phosphate units randomly distributed in the network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号