首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chalcohalide glass with a composition of 65GeS2–25Ga2S3–10CsI (in mol%) doped with 0.6 wt% Tm3+ ions was prepared by conventional melt–quench method. By heat treating the precursor glass at 20 °C above its glass transition temperature Tg for different durations, IR transparent glass ceramics were obtained. X-ray diffraction (XRD) and scanning electron microscope (SEM) showed that Ga2S3 crystallites were precipitated after heat treatment and their grain sizes were in nano-scale and increased with the elongation of heat treated time. Mid-IR luminescence properties of the glass and transparent glass ceramic samples were investigated. The emissions at 2.3 and 3.8 μm corresponding to optical transitions of 3H4  3H5 and 3H5  3F4 of Tm3+ ions were significantly enhanced by the presence of Ga2S3 nanocrystals and reached a maximum after 8 hours treatment.  相似文献   

2.
Photoluminescence properties of Sm3+, Dy3+, and Tm3+-doped transparent oxyfluoride silicate glass ceramics containing CaF2 nanocrystals were reported. Emission bands of 4G5/2  6H5/2 (562 nm), 4G5/2  6H7/2 (598 nm), 4G5/2  6H9/2 (645 nm) and 4G5/2  6H11/2 (706 nm) for the Sm3+: glass and glass ceramic, with an excitation at 6H5/2  4F7/2 (402 nm) have been recorded. Of them, 4G5/2  6H7/2 (598 nm) has shown a bright orange emission. With regard to the Dy3+: glass, a bright fluorescent yellow emission at 575 nm (4F9/2  6H13/2) and blue emission at 481 nm (4F9/2  6H15/2) have been observed, apart from 662 nm (4F9/2  6H11/2) emission transition with an excitation at 386 nm (6H15/2  4I13/2 + 4F7/2) wavelength. Emission bands of 1G4  3F4 (650 nm) and 1G4  3H5 (795 nm) transitions for the Tm3+: glass and glass ceramic, with an excitation at 3H6  1G4 (467 nm) have been observed. Of them, 1G4  3F4 (650 nm) has shown bright red emission. Decay lifetime measurements were also carried out for all the observed Sm3+, Dy3+, and Tm3+-doped glass and glass ceramic emission bands.  相似文献   

3.
Transparent glass-ceramics containing SrF2 nanocrystals were fabricated by melt-quenching and subsequent heating of glass with a composition of 50SiO2–10Al2O3–20ZnF2–20SrF2. X-ray diffractometry, transmission electron microscopy, and energy dispersive spectroscopy were used to investigated the microstructure of the SrF2 glass-ceramics. Results show that SrF2 nanocrystals were homogeneously precipitated among the aluminosilicate glass matrix, and the mean size of the SrF2 nanocrystals was about 20 nm, and Eu3+ ions partition mainly into the precipitated SrF2 nanocrystals after crystallization. The glass-ceramics exhibited intense red emission corresponding to the 5D0  7FJ (J = 0–4) transitions of Eu3+ ions under 393 nm excitation. A significant Eu3+ luminescence enhancement by a factor of about nine times was observed after crystallization. Besides, the obvious stark splitting emissions, the low forced electric dipole 5D0  7 F2 transition, and the long decay lifetimes of Eu3+ ions also revealed the partition of Eu3+ ions into low phonon energy SrF2 nanocrystals. Our results indicate the SrF2 based fluorosilicate glass-ceramics is an excellent host for trivalent lanthanide ion doping and may find applications in photonics.  相似文献   

4.
Reduction of Eu3+  Eu2+ and luminescence of europium (Eu) ions in glass ceramics containing SrF2 nanocrystals have been investigated. The formation of SrF2 nanocrystals in glass ceramics was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Blue luminescence of the Eu2+ ions was observed in the Eu doped glass ceramics which were prepared by the heat treatment of the glass in air atmosphere. The double-exponential decay curves of 5D0 state of Eu3+ in the Eu doped glass ceramics indicated that there were two different surroundings of the Eu ions in the glass ceramics.  相似文献   

5.
A Nd3 +-doped transparent oxyfluoride glass ceramic containing Ca5(PO4)3F nanocrystals was prepared by thermal treatment at the crystallization temperature for the precursor glass. The transmittances of the precursor glass and the glass ceramic with a thickness of about 2 mm are up to 84.7% and 77.4% in the visible range. The volume fraction of Ca5(PO4)3F nanocrystals in the glass ceramic is about 19% and the ingress fraction of Nd3 + ions into the Ca5(PO4)3F nanocrystals is about 32%. The peak absorption cross-section increases to 224% at 807 nm and the full width at half maximum for the 807 nm band decreases from 17.5 to 3.5 nm after the crystallization process. The peak stimulated emission cross-section increases from 1.89 × 10? 20 to 2.42 × 10? 20 cm2 at 1062 nm and the effective width of the emission line for the 1062 nm band decreases from 34 to 29 nm after the crystallization process. The improvement of spectroscopic properties indicates that the glass ceramic is potentially applicable as the 1.06 μm laser material.  相似文献   

6.
A Er3+ and Yb3+ co-doped transparent oxyfluoride glass ceramic containing BaF2 nanocrystals has been prepared. The formation of BaF2 nanocrystals in the glass ceramic was confirmed by X-ray diffraction. Intense upconversion luminescence in the Er3+ and Yb3+ co-doped glass ceramic could be observed. Stark splitting of the Er3+ upconversion luminescence peaks in the glass ceramic indicated that Er3+ and Yb3+ had been incorporated into the BaF2 nanocrystals. Near infrared luminescence decay curves showed that the Er3+ and Yb3+ co-doped glass ceramic had higher luminescence efficiency than the precursor glass.  相似文献   

7.
The luminescence behavior of composite materials consisting of nanocrystals of Y3?xAl5O12:Tb (YAG:Tb3+) embedded into silica xerogel has been studied. Blue and green luminescence of the materials is due to a cross-relaxation effect in Tb3+ ions doped into a YAG lattice. The materials with YAG:Tb3+ nanocrystals immobilized in silica exhibit enhancement of Tb3+ luminescence in comparison with the macrocrystalline YAG:Tb3+ powder. The Tb3+ luminescence intensity of a composite material dried at room temperature can be improved when higher aliphatic alcohols are applied in a one-pot procedure during a sol–gel synthesis. On the other hand, the Tb3+ luminescence is quenched in the presence of Ag nanoparticles in the material. The composite material (YAG:Tb3+ in silica) exhibits thermal stability at higher temperatures and achieves the highest emission intensity after having been annealed at 700 °C.  相似文献   

8.
《Journal of Crystal Growth》2006,286(2):487-493
The pure hexagonal phase YBO3:Tb3+ phosphors with good crystallinity and uniform size were prepared by hydrothermal reaction (HR). The particle size and morphology can be well controlled by adjusting the concentration of ammonium acetate and varying the reaction temperature and time. The phosphor prepared by HR emits an intense green light at 543 nm, which is stronger than that from crystals synthesized by solid-state reaction (SR). The influence of Tb3+-doping concentration on the crystallization and luminescent properties were investigated. The results showed that the samples exhibited a higher quenching concentration of Tb3+ in comparison with those prepared by the SR. The phenomena were also discussed.  相似文献   

9.
《Journal of Non》2006,352(50-51):5344-5352
Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 μm diodes because of low phonon energies. Spectroscopic analysis indicates low non-radiative quenching and pulsed laser performance studies confirm this prediction by showing a quantum efficiency of 1.69.  相似文献   

10.
We report on highly efficient broadband near-infrared photoluminescence (PL) in Ni2+-doped glass ceramics (GCs) films fabricated by annealing Si/Ni2+-doped glass superlattices (SNGS). Over two orders of magnitude enhancement of PL can be achieved in comparison with that from the annealed glass film. The PL lifetime of the annealed SNGS is several milliseconds, which is much longer than those of bulk GCs. The strong PL enhancement results from the formation of high-quality cordierite nanocrystals because the Si layers act as Si source for the crystal growth. This technique can be extended to fabricate other types of high-quality GCs films.  相似文献   

11.
《Journal of Non》2007,353(18-21):1813-1817
Fluorescence spectra of Tb3+ ions in 55.5P2O5–17K2O–14.5BaO–8Al2O3–4AlF3–1.0Tb4O7 (PKBAFTb) glass have been measured as a function of high pressures up to 35 GPa at room temperature. A strong red shift of 5D4  7FJ (J = 3, 4 and 5) transitions with different rates is observed under pressure, which is attributed to the increasing spin–orbit coupling constant, ζ4f. There is a considerable pressure effect on the magnitude of the crystal-field splittings observed for the 5D4  7F4 and 7F5 transitions. The increase in Stark splittings observed under pressure is due to pressure induced electrostatic interaction between the 4f electrons and their ligands. Decay times of the emission from the 5D4 level fit to a single exponential function for the entire pressure range studied. Analyses indicate that the luminescence properties under pressure are more or less reversible, which shows the absence of considerable hysteresis in the present studied glass.  相似文献   

12.
《Journal of Non》2006,352(6-7):524-527
Luminescence properties of Cr3+ ions in a silica-based precursor glass, and in fabricated optically transparent glass-based nanocrystalline composites, have been investigated. The luminescence spectra of the precursor glass revealed a wide range of crystal fields and showed the 4T24A2 broadband emission of Cr3+ ions in a weak crystal field, combined with 2E–4A2 emission characteristic for Cr3+ ions in a strong crystal field. Glass–ceramic nanocomposites, with gallium oxide nanocrystals nucleated in a host glass matrix, indicated the prevailing contribution of the crystal-like 2E–4A2 emissions (R-lines) of Cr3+ ions in a strong crystal field. The low-temperature studies demonstrated that the fluorescence of Cr3+ ions could be altered from sharp R-lines of the 2E–4A2 transition, below 70 K, to a combination of R-lines and their sidebands, above 70 K. Our results indicate that, in the developed glass–ceramic nanocomposites, most of the Cr3+ ions have migrated from the host glass matrix to the nucleated gallium oxide nanocrystalline phase.  相似文献   

13.
In this work a transparent bulk glass with the mol% composition 76TeO2·10ZnO·9.0PbO·1.0PbF2·3.0Na2O doped with Tm3 + has been synthesized. Results of differential thermal analysis (DTA) indicate a high thermal stability and low tendency to crystallization of this glass. The refractive indices at different wavelengths, the Urbach energy, the optical energy gap, the Sellmeier gap energy and the dispersion energy have been estimated. Spectroscopic quality factor of Tm3 + was evaluated from optical absorption spectra. Electric and magnetic dipole transition probabilities, branching ratios, and radiative lifetimes of several excited states of Tm3 + have been predicted using calculated intensity Judd–Ofelt parameters. The classical McCumber theory has been applied to evaluate the emission cross-sections for 3F4  3H6 transition around 1.8 μm. This study shows that TZPPN glass doped with Tm3 + ions is a promising candidate for laser applications.  相似文献   

14.
Energy-transfer excited upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped PbGeO3–PbF2–CdF2 glass and glass–ceramic under infrared excitation is investigated. In Ho3+/Yb3+-codoped samples, green (545 nm), red (652 nm), and near-infrared (754 nm) upconversion emission corresponding to the 5S2(5F4)  5I8, 5F5  5I8, and 5S2(5F4)  5I7 transitions, respectively, was observed. Blue (490 nm) emission assigned to the 5F2,3  5I8 transition was also detected. In the Tb3+/Yb3+-codoped system, bright UV–visible emission around 384, 415, 438, 473–490, 545, 587, and 623 nm, identified as due to the 5D3(5G6)  7FJ(J = 6, 5, 4) and 5D4  7FJ(J = 6, 5, 4, 3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicated that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed.  相似文献   

15.
The surface plasmon (SP) excited infrared-to-visible upconversion luminescence has been studied in the oxyfluoride glass ceramics containing Er3+-doped fluoride nano-crystals. Upconversion luminescence was observed at glass ceramics. Quantum yield of upconversion luminescence increased with increasing heat-treatment temperature. The transparent glass ceramics heat-treated at 700 °C was covered with a 50 nm gold film, and then attached to an SF10 prism with index-matching oil to make an attenuated total reflection (ATR) illumination. The intense upconversion luminescence bands at 540 and 660 nm were observed at the SP resonance angle by using p-polarized laser beam. The apparent dependences of the upconversion efficiency on laser polarization and on incident angle demonstrated the SP excited upconversion of Er3+.  相似文献   

16.
The solarization mechanism in a glass containing both Ce3+ and As5+, 16Na2O·11CaO·73SiO2:0.15AsOx·0.015CeOx (in mol.%), is newly proposed by elucidating the valence and coordination structure of arsenic after the photochemical reaction, the mechanism being traditionally expressed as
2Ce3+ + As5+hv 2Ce4+ + As3+
ESR hyperfine quartets due to an As4+ ranging from 0.1 to 0.5 T built up on UV-irradiation and their line shape varied with the duration of the irradiation. The line shape analysis of the ESR spectra employing a computer simulation technique has led to the following conclusions; (1) As5+ is reduced to As4+ in the solarization process. (2) The geometry around the As4+ in the solarized glass is tetrahedral during the early stage and trigonal-pyramidal during the latter stage of the reaction.  相似文献   

17.
Haigui Yang  Zhenwen Dai  Ningning Zu 《Journal of Non》2008,354(15-16):1796-1800
The effects of activator concentration on the relaxation of the 1I6, 1D2, 1G4 and 3H4 levels of Tm3+ were investigated by the analysis of the fluorescence decay curves in Tm3+ and Tm3+/Tb3+ doped ZBLAN glasses. UV and blue upconversion luminescence bands around 362 and 450 nm were observed by 655 nm laser excitation in all the samples. The upconversion mechanism was attributed to excited state absorption (ESA) by analyzing the decay profiles and the intensity dependence.  相似文献   

18.
Tb3 + single-doped SiO2 (SiO2:Tb3 +) and Tb3 +, Ag co-doped SiO2 (SiO2:Tb3 +–Ag) nanostructured luminescent materials were prepared by a modified Stöber method. Their microstructure and optical property were investigated using scanning electron microscopy, ultraviolet visible absorption and photoluminescence spectrophotometry. Results show that the samples are composed of well-dispersed near-spherical particles with a diameter about 50 nm, the highest fluorescence intensity is obtained when the doping concentration of Tb3 + is 4.86 mol%, the corresponding internal quantum efficiency is 13.6% and the external quantum efficiency is 8.2%. The experimental results indicate that Ag nanoparticles can greatly enhance the light absorption at 226 nm and the light emission at 543 nm of SiO2:Tb3 +–Ag, and the fluorescence lifetime reduces with increasing Ag concentration in SiO2:Tb3 +–Ag. Additionally, the present results indicate that fluorescence enhancement is attributed to the local field enhancement and the increased radiative decay rates induced by Ag nanoparticles.  相似文献   

19.
Glasses of the xEu2O3 · (100?x)[2Bi2O3 · B2O3] system with 0 ? x ? 25 mol% have been characterized by X-ray diffraction and FTIR spectroscopy measurements. Melting at 1100 °C and the rapid cooling at room temperature permitted us to obtain glass samples. In order to improve the local order and to develop crystalline phases, the glass samples were kept at 625 °C for 24 h. After heat treatment two crystalline phases were put into evidence. One of the crystalline phases was observed for the host glass matrix, the x = 0 mol% sample, and belongs to the cubic system. The second one was observed for the x = 25 mol% sample and was find to be orthorhombic with two unit cell parameters very close to each other. For the samples with 0 < x < 25 mol% there is a mixture of the two mentioned phases. FTIR spectroscopy data suggest that both Bi2O3 and B2O3 play the glass network former role while the europium ions play the network modifier role in the studied glasses.  相似文献   

20.
《Journal of Non》2006,352(23-25):2444-2447
In this work, we report the optical properties of Yb3+ ions in halogeno-sulfide glasses of composition (75  x)GeS2–25Ga2S3xCsCl (x = 5%, 10%, 15%, 20%, and 25% CsCl). This study includes an analysis of the influence of halide concentration on the absorption and emission cross-sections and lifetimes of Yb3+ ions. A blue shift of the absorption and emission bands and a decrease of the absorption and emission cross-sections and transition probability are observed as the halide concentration increases in the glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号