首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p-Cymene complexes MCl26-p-cymene)L [M = Ru, Os; L = P(OEt)3, PPh(OEt)2, (CH3)3CNC] were prepared by allowing [MCl(μ-Cl)(η6-p-cymene)]2 to react with phosphites or tert-butyl isocyanide. Treatment of MCl26-p-cymene)L complexes with 1,3-ArNNN(H)Ar triazene and an excess of NEt3 gave the cationic triazenide derivatives [M(η2-1,3-ArNNNAr)(η6-p-cymene)L]BPh4 (Ar = Ph, p-tolyl). Neutral triazenide complexes MCl(η2-1,3-ArNNNAr)(η6-p-cymene) (M = Ru, Os) were also prepared by allowing [MCl(μ-Cl)(η6-p-cymene)]2 to react with 1,3-diaryltriazene in the presence of triethylamine. p-Cymene complexes MCl26-p-cymene)L reacted with equimolar amounts of 1,3-ArNNN(H)Ar triazene to give both triazenide complexes [M(η2-1,3-ArNNNAr)(η6-p-cymene)L]BPh4 and amine derivatives [MCl(ArNH2)(η6-p-cymene)L]BPh4. A reaction path for the formation of the amine complex is also reported. The complexes were characterised by spectroscopy and X-ray crystallography of RuCl26-p-cymene)[PPh(OEt)2] and [Ru(η2-1,3-p-tolyl-NNN-p-tolyl)(η6-p-cymene){CNC(CH3)3}]BPh4. Selected triazenide complexes were studied as catalysts in the hydrogenation of 2-cyclohexen-1-one and cinnamaldehyde.  相似文献   

2.
The reaction of [Ru(η6-p-cymene)Cl2]2 with 2.0 mol equivalents of C(CH2SMe)4, C(CH2SeMe)4, 1,2,4,5-C6H2(CH2SMe)4 or 1,2,4,5-C6H2(CH2SeMe)4 (L4) and [NH4][PF6] in ethanol solution forms the [RuCl(η6-p-cymene){κ2-L4}][PF6] complexes. Similar Os(II) complexes are obtained starting with [Os(η6-p-cymene)Cl2]2. Treatment of [RuCl(η6-p-cymene){κ2-L4}][PF6] with a further 0.5 mol equivalents of [Ru(η6-p-cymene)Cl2]2 or reaction of [Ru(η6-p-cymene)Cl2]2 directly with 1.0 mol equivalent of L4 forms the homobimetalllic [{RuCl(η6-p-cymene)}22κ′2-L4}][PF6]2. Reaction of [OsCl(η6-p-cymene)-{κ2-C(CH2SeMe)4}][PF6] with [Ru(η6-p-cymene)Cl2]2 or [PtCl2(MeCN)2] affords the heterobimetallic [{OsCl(η6-p-cymene)}{RuCl(η6-p-cymene)}{κ2κ′2-C(CH2SeMe)4}][PF6]2 and [{OsCl(η6-p-cymene)}{PtCl2}{κ2κ′2-C(CH2SeMe)4}][PF6] respectively. The complexes have been characterised by multinuclear NMR and IR spectroscopy and X-ray crystallography.  相似文献   

3.
Chloro-complexes [OsCl(N-N)P3]BPh4 (12) [N-N=2,2-bipyridine (bpy) and 1,10-phenanthroline (phen); P=P(OEt)3 and PPh(OEt)2] were prepared by allowing OsCl4(N-N) to react with zinc dust in the presence of phosphites. Treatment of the chloro-complexes 12 with NaBH4 yielded, in the case of bpy, the hydride [OsH(bpy)P3]BPh4 (4) derivatives. Mono-phosphite [OsCl(bpy)2P]BPh4 (3) complexes were also prepared by reacting the [OsCl2(bpy)2]Cl compound with zinc dust in the presence of phosphite. Protonation reaction of the hydride [OsH(bpy)P3]+ (4) cations with Brønsted acid was studied and led to thermally unstable (above 0 °C) dihydrogen [Os(η2-H2)(bpy)P3]2+ (4*) derivatives. The presence of the H2 ligand is supported by variable-temperature NMR spectra and T1min measurements. Carbonyl [Os(CO)(bpy){P(OEt)3}3](BPh4)2 (5), nitrile [Os(CH3CN)(bpy){P(OEt)3}3](BPh4)2 (6), and hydrazine [Os(bpy)(NH2NH2){P(OEt)3}3](BPh4)2 (7) complexes were prepared by substituting the H2 ligand in the η2-H2 (4*) derivatives. Aryldiazene complex [Os(C6H5NNH)(bpy){P(OEt)3}3](BPh4)2 (8) was also obtained by allowing the hydride [OsH(bpy)P3]BPh4 to react with phenyldiazonium cation.  相似文献   

4.
Imine complexes [MCl(η 6-p-cymene){η1-NHC(H)Ar}(PR3)]BPh4 (1-3) [M = Ru, Os; PR3 = PPh(OEt)2, PPh2OEt; Ar = Ph, p-tolyl] were prepared by reacting MCl26-p-cymene)(PR3) precursors with benzyl azide ArCH2N3 in the presence of NaBPh4. Benzophenone-imine complexes [MCl(η 6-p-cymene){η1-NHCPh2}(PR3)]BPh4 (4-6) [M = Ru, Os; PR3 = PPh(OEt)2, PPh2OEt] were also prepared by allowing MCl26-p-cymene)(PR3) to react with Ph2CNH in the presence of NaBPh4. The complexes were characterised spectroscopically (IR, 1H, 13C, 31P, 15N NMR) and by X-ray crystal structure determination of [RuCl(η 6-p-cymene){η1-NHC(H)-p-tolyl}{PPh(OEt)2}]BPh4 (1b).  相似文献   

5.
Reaction of Ph2PNHCH2-C4H3S with [Ru(η6-p-cymene)(μ-Cl)Cl]2, [Ru(η6-benzene)(μ-Cl)Cl]2, [Rh(μ-Cl)(cod)]2 and [Ir(η5-C5Me5)(μ-Cl)Cl]2 yields complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1, [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2, [Rh(Ph2PNHCH2-C4H3S)(cod)Cl], 3 and [Ir(Ph2PNHCH2-C4H3S)(η5-C5Me5)Cl2], 4, respectively. All complexes were isolated from the reaction solution and fully characterized by analytical and spectroscopic methods. The structure of [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 was also determined by single crystal X-ray diffraction. 1-4 are suitable precursors forming highly active catalyst in the transfer hydrogenation of a variety of simple ketones. Notably, the catalysts obtained by using the ruthenium complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1 and [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 are much more active in the transfer hydrogenation converting the carbonyls to the corresponding alcohols in 98-99% yields (TOF ≤ 200 h−1) in comparison to analogous rhodium and iridium complexes.  相似文献   

6.
The reactions of [(ind)Ru(PPh3)2CN] (ind = η5-C9H7) (1) and [CpRu(PPh3)2CN] (Cp = η5-C5H5) (2) with [(η6-p-cymene)Ru(bipy)Cl]Cl (bipy = 2,2′-bipyridine) (3) in the presence of AgNO3/NH4BF4 in methanol, respectively, yielded dicationic cyano-bridged complexes of the type [(ind)(PPh3)2Ru(μ-CN)Ru(bipy)(η6-p-cymene)](BF4)2 (4) and [Cp(PPh3)2Ru(μ-CN)Ru(bipy)(η6-p-cymene)](BF4)2 (5). The reaction of [CpRu(PPh3)2CN] (2), [CpOs(PPh3)2CN] (6) and [CpRu(dppe)CN] (7) with the corresponding halide complexes and [(η6-p-cymene)RuCl2]2 formed the monocationic cyano-bridge complexes [Cp(PPh3)2Ru(μ-CN)Os(PPh3)2Cp](BF4) (8), [Cp(PPh3)2Os(μ- CN)Ru(PPh3)2Cp](BF4) (9) and [Cp(dppe)Ru(μ-CN)Os(PPh3)2Cp](BF4) (10) along with the neutral complexes [Cp(PPh3)2Ru(μ-CN)Ru (η6-p-cymene)Cl2] (11), [Cp(PPh3)2Os(μ-CN)Ru(η6-p-cymene)Cl2] (12), and [Cp(dppe) Ru(μ-CN)Ru(η6-p-cymene)Cl2] (13). These complexes were characterized by FT IR, 1H NMR, 31P{1H} NMR spectroscopy and the molecular structures of complexes 4, 8 and 11 were solved by X-ray diffraction studies.  相似文献   

7.
The neutral arene ruthenium azido complexes [(η6-p-cymene)Ru(LL)(N3)], [LL = acetylacetonato (acac) (4), benzoylacetonato (bzac) (5) diphenylbenzoyl methane (dbzm) (6)] undergo [3+2] cycloaddition reaction with a series of activated alkynes and fumaronitrile to produce the arene ruthenium triazolato complexes: [(η6-p-cymene)Ru(LL){N3C2(CO2R)2}] [LL = (acac), R = Me (7); LL = (bzac), R = Me (8); LL = (dbzm), R = Me (9); LL = (acac), R = Et (10); LL = (bzac), R = Et (11); LL = (dbzm), R = Et (12) and [(η6-p-cymene)Ru(LL)(N3C2HCN)]; LL = acac (13), bzac (14); dbzm (15). However, cationic azido complexes, [(η6-p-cymene)Ru(dppe)(N3)]+ and [(η6-p-cymene)Ru(dppm)(N3)]+ do not undergo such cycloaddition reactions. The complexes were characterized on the basis of microanalyses, FT-IR and NMR spectroscopic data. Crystal structures of representative complexes were determined by single crystal X-ray diffraction.  相似文献   

8.
Mixed-ligand OsCl(Tp)L(PPh3) complexes 1 [Tp = hydridotris(pyrazolyl)borate; L = P(OMe)3, P(OEt)3 and PPh(OEt)2] were prepared by allowing OsCl(Tp)(PPh3)2 to react with an excess of phosphite. Treatment of chlorocomplexes 1 with NaBH4 in ethanol afforded hydride OsH(Tp)L(PPh3) derivatives 2. Stable dihydrogen [Os(η2-H2)(Tp)L(PPh3)]BPh4 derivatives 3 were prepared by protonation of hydrides 2 with HBF4 · Et2O at −80 °C. The presence of the η2-H2 ligand is supported by short T1 min values and JHD measurements on the partially deuterated derivatives. Treatment of the hydride OsH(Tp)[P(OEt)3](PPh3) complex with the aryldiazonium salt [4-CH3C6H4N2]BF4 afforded aryldiazene [Os(4-CH3C6H4NNH)(Tp){P(OEt)3}(PPh3)]BPh4 derivative 4. Instead, aryldiazenido [Os(4-CH3C6H4N2)(Tp)[P(OEt)3](PPh3)](BF4)2 derivative 5 was obtained by reacting the hydride OsH(Tp)[P(OEt)3](PPh3) first with methyltriflate and then with aryldiazonium [4-CH3C6H4N2]BF4 salt. Spectroscopic characterisation (IR, 15N NMR) by the 15N-labelled derivative strongly supports the presence of a near-linear Os-NN-Ar aryldiazenido group. Imine [Os{η1-NHC(H)Ar}(Tp){P(OEt)3}(PPh3)]BPh4 complexes 6 and 7 (Ar = C6H5, 4-CH3C6H4) were also prepared by allowing the hydride OsH(Tp)[P(OEt)3](PPh3) to react first with methyltriflate and then with alkylazides.  相似文献   

9.
The new potentially bidentate pyrazole-phosphinite ligands [(3,5-dimethyl-1H-pyrazol-1-yl)methyl diphenylphosphinite] (L1) and [2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl diphenylphosphinite] (L2) were synthesised and characterised. The reaction of L1 and L2 with the dimeric complexes [Ru(η6-arene)Cl2]2 (arene = p-cymene, benzene) led to the formation of neutral complexes [Ru(η6-arene)Cl2(L)] (L = L1, L2) where the pyrazole-phosphinite ligand is κ1-P coordinated to the metal. The subsequent reaction of these complexes with NaBPh4 or NaBF4 produced the [Ru(η6-p-cymene)Cl(L2)][BPh4] and [Ru(η6-benzene)Cl(L2)][BF4] compounds which contain the pyrazole-phosphinite ligand κ2-P,N bonded to ruthenium. All the complexes were fully characterised by analytical and spectroscopic methods. The structure of the complex [Ru(η6-p-cymene)Cl(L2)][BPh4] was also determined by a X-ray single crystal diffraction study.  相似文献   

10.
The reactions of PhSe, PhS and Se2− with N-{2-(chloroethyl)}pyrrolidine result in N-{2-(phenylseleno)ethyl}pyrrolidine (L1), N-{2-(phenylthio)ethyl}pyrrolidine (L2), and bis{2-pyrrolidene-N-yl)ethyl selenide (L3), respectively, which have been explored as ligands. The complexes [PdCl2(L1/L2)] (1/7), [PtCl2(L1/L2)] (2/8), [RuCl(η6-C6H6)(L1/L2)][PF6] (3/9), [RuCl(η6-p-cymene)(L1/L2)][PF6] (4/10), [RuCl(η6-p-cymene)(NH3)2][PF6] (5) and [Ru(η6-p-cymene)(L1)(CH3CN)][PF6]2·CH3CN (6) have been synthesized. The L1-L3 and complexes were found to give characteristic NMR (Proton, Carbon-13 and Se-77). The crystal structures of complexes 1, 3-6, 9 and 10 have been solved. The Pd-Se and Ru-Se bond lengths have been found to be 2.353(2) and 2.480(11)/2.4918(9)/2.4770(5) Å, respectively. The complexes 1 and 7 have been explored for catalytic Heck and Suzuki-Miyaura coupling reactions. The value of TON has been found up to 85 000 with the advantage of catalyst’s stability under ambient conditions. The efficiency of 1 is marginally better than 7. The Ru-complexes 3 and 9 are good for catalytic oxidation of primary and secondary alcohols in CH2Cl2 in the presence of N-methylmorpholine-N-oxide (NMO). The TON value varies between 8.0 × 104 and 9.7 × 104 for this oxidation. The 3 is somewhat more efficient catalyst than 9.  相似文献   

11.
The dimeric starting material [Ru(η6-p-cymene)(μ-Cl)Cl]2 reacts with the phosphino-amides o-Ph2P–C6H4CO–NH–R [R = iPr (a), Ph (b), 4-MeC6H4 (c), 4-FC6H4 (d)] to give the mononuclear compounds 1ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–NH–R)]Cl. The subsequent reaction of these complexes with KPF6 produced the cationic species 2ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–NH–R)][PF6] in which phosphino-amides also act as rigid P,O-chelating ligands. The molecular structures of 2bd were determined crystallographically. Amide deprotonation is achieved when complexes 2ad were made react with 1 M aqueous solution of KOH, affording the corresponding neutral species 3ad [RuCl(η6-p-cymene)(o-Ph2P–C6H4–CO–N–R)] in which a P,N-coordination mode is suggested.  相似文献   

12.
The thermal decomposition of [RuCl26-p-cymene)]2 (1) and its biologically active N-alkylphenothiazine compounds of composition L[RuCl36-p-cymene)] where L = CPH+ (2), TFH+·HCl (3), and TRH+ (4) (chlorpromazine hydrochloride, CP·HCl; trifluoperazine dihydrochloride, TF·2HCl; and thioridazine hydrochloride, TR·HCl, respectively) has been studied. The crystal and molecular structure of compound 3 was determined earlier by single crystal X-ray diffraction analysis. The thermal data were collected by simultaneous TG/DSC measurements. For evolved gas detection, the qualitative reaction of chlorides with AgNO3 in an acidic solution was applied. The measurements were carried out in the temperature range to 700 °C in nitrogen atmosphere. Compounds of L[RuCl36-p-cymene)] crystallize with water or water/2-propanole. On the basis of thermal data, the trend in the solvent bonding energies was assessed.  相似文献   

13.
A series of conformationally rigid half-sandwich organoruthenium(II) complexes with the general formula [(η6-p-cymene)RuCl(L)] (where L = mono anionic 2-(naphthylazo)phenolato ligands) have been synthesized from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] with a set of 2-(naphthylazo)phenolato O,N-donor ligands. All the ruthenium complexes were fully characterized by FT-IR, 1H NMR, and UV–Vis spectroscopy as well as elemental analysis. In dichloromethane solution all the metal complexes exhibits characteristic metal-to-ligand charge transfer bands (MLCT) and emission bands in the visible region. The molecular structure of one of the complexes [Ru(η6-p-cymene)(Cl)(L2)] (2) was determined by X-ray crystallography. Electrochemical data of all the ruthenium complexes show a two metal centered voltammetric responses with respect to Ag/AgCl at scan rate 100 mV s−1. Further, the complex (2) efficiently catalyzes the oxidation of a wide range of alcohols to their corresponding carbonyl compounds in the presence of N-methylmorpholine-N-oxide (NMO) up to 97%.  相似文献   

14.
Ethylene complexes [OsH(η2‐CH2=CH2)L4]Y ( 1 , 2 ) [L = PPh(OEt)2, P(OEt)3; Y = OTf, BPh4] were prepared by reacting the dihydride OsH2L4 first with methyl triflate CH3OTf and then with ethylene (1 atm). Alternatively, the compound [OsH(η2‐CH2=CH2){PPh(OEt)2}4]OTf was prepared by allowing the dinitrogen derivative [OsH(N2){PPh(OEt)2}4]OTf to react with ethylene. Acrylonitrile CH2=C(H)CN reacts with OsH(OTf)L4 [L = P(OEt)3] to give the complex [OsH{κ1‐NCC(H)=CH2}{P(OEt)3}4]BPh4 ( 3 ). The complexes were characterized spectroscopically (IR and 1H, 13C, 31P NMR) and by X‐ray crystal structure determination of the [OsH(η2‐CH2=CH2){PPh(OEt)2}4]BPh4 derivative.  相似文献   

15.
Phosphine-pyrazolyl based tripod ligands ROCH2C(CH2Pz)2(CH2PPh2) (R = H, Me, allyl; Pz = pyrazol-1-yl) were efficiently synthesized and characterized. Reactions of these ligands with [Ru(η6-p-cymene)Cl2]2 afforded complexes of the type [Ru(η6-p-cymene)Cl2](L) (6-8) in which the ligands exhibit κ1-P-coordination to the metal center. Complex [Ru(η6-p-cymene)Cl2{Ph2PCH2C(CH2OH)(CH2Pz)2}] (6) underwent chloride-dissociation in CH2Cl2/MeCN to give complex [RuCl(η6-p-cymene){κ2(P,N)-Ph2PCH2C(CH2OH)(CH2Pz)2}][Cl] (9). Complexes 6-9 demonstrated poor to moderate catalytic activity in the transfer hydrogenation of acetophenone. All these complexes were fully characterized by analytical and spectroscopic methods and their molecular structures were determined by X-ray crystallographic study.  相似文献   

16.
The catalytic activity of a ruthenium(II)-p-cymene complex containing a partially coordinated triphosphine ligand, [RuCl(κ2-triphos)(p-cymene)]PF61, has been investigated in the hydrogenation of styrene to ethylbenzene. The influence of arene dissociation and coordination of the free phosphine donor group on the catalytic activity have been probed directly and indirectly by comparison to structural analogues. Analogues of 1 containing in a diphosphine ligand, [RuCl(κ2-dppp)(p-cymene)]PF62, or a labile arene ligand, [RuCl(κ2-triphos)(η6-PhCO2Et)]PF63, show significantly enhanced catalytic activity - demonstrating the importance of ligand coordination/dissociation dynamics in ruthenium(II)-arene compounds during catalysis. These observations are supported by thermolysis reactions of 1 in DMSO. In addition, improved syntheses of 1 and 2 are reported together with the solid-state structures of syn-1, syn-3 and [Ru(η3-C8H13)(κ3-triphos)]PF6.  相似文献   

17.
The complex [WI(CO)(S2CNC4H8)(η2-MeC2Me)2] reacts with an equimolar amount of Na[BPh4] in acetonitrile at room temperature to give the cationic bisbut-2-yne complex [W(CO)(NCMe)(S2CNC4H8)(η2-MeC2Me)2][BPh4] (1) by replacement of an iodide ligand by acetonitrile. The crystal structure of 1 has been determined and reveals a pseudo-octahedral geometry with the mid points of the two cis-but-2-yne ligands approximately coplanar with the sulphur atoms of the dithiocarbamate ligand. Carbon monoxide and acetonitrile occupy the axial sites. 13C NMR spectroscopy shows the two but-2-yne ligands in 1 donate a total of 6 electrons to the tungsten. Preliminary studies of the chemistry of 1 are also described.  相似文献   

18.
Arene ruthenium(0) complexes with carbonyl side chain functionalities like [Ru(η6-C6H5COR)(η4-COD)] or [Ru(η6-o-C6H4{R1}COR)(η4-COD)] (COD=1,5-cyclooctadiene; R=H, CH3; R1=H, CH3, OCH3) are easily accessible by replacing the naphthalene ligand of [Ru(η6-naphthalene)(η4-COD)] (1) through an arene exchange reaction. These carbonyl species are susceptible to standard organic reactions of the carbonyl function, thus allowing the introduction of dangling side chains bearing highly polar functions like hydroxyl or amino groups. Aldol reaction of [Ru(o-C6H4{CH3}COCH3)(COD)] (3) with (−)-menthylchloroformate in the presence of LDA (LDA=lithium diisopropylamide) leads to a diastereomeric mixture of [Ru(menthyl-{3-oxo-3-η6-o-tolyl}propionate)(COD)] (10). However, treatment of 3 with LDA and o-tolylaldehyde or benzaldehyde affords the unexpected products [Ru(1-η6-o-tolyl-3-o-tolylpropan-1-one)(COD)] (11) and [Ru(1-η6-o-tolyl-1-phenylpropan-1-one)(COD)] (12). A diastereoselective addition (88% de) of deprotonated menthylacetate to [Ru(o-tolylaldehyde)(COD)] (4) results in the formation of [Ru(menthyl 3-η6-o-tolyl-3-hydroxypropionate)(COD)] (13). Racemic planar-chiral aldehyde complexes 2 and 4 react with amines giving the imination products in good yield. In case of reaction between 2 and (R)-N-amino-2-(methoxymethyl)-pyrrolidine (RAMP), diastereomeric [Ru(N-[[η6-(2-methylphenyl]methylene]-(R)-2-(methoxymethyl)-1-pyrrolidinamine)(COD)] (17) is formed. The diastereomers (R,R)-17 and (S,R)-17 have been separated by fractional crystallisation. Asymmetric arene ruthenium complexes with a defined planar-chiral configuration are thus accessible. Reduction of [Ru(3-η6-phenyl-(R)-methylbutyrate)(COD)] (7) with LiAlH4 yields the chiral γ-alcohol [Ru(3-η6-phenyl-(R)-1-butanol)(COD)] (18). A Wittig olefination converts the aldehyde complex 4 into a mixture of E- and Z-isomeric [Ru(1-η6-o-tolyl-2-phenylethylene)(COD)] 21a and 21b, which were separated again by fractional crystallisation.  相似文献   

19.
Trichlorogermyl complexes M(GeCl3)(CO)nP5? n (1–4) [M = Mn, Re; n = 2, 3; P = PPh(OEt)2 (a), P(OEt)3 (b)] were prepared by allowing chloro compounds MCl(CO)nP5? n to react with an excess of GeCl2?dioxane in 1,2-dichloroethane. Treatment of compounds 1–4 with LiAlH4 in thf yielded trihydridegermyl derivatives M(GeH3)(CO)nP5?n (5–8), whereas treatment of the same complexes with NaBH4 in ethanol afforded triethoxygermyl derivatives M[Ge(OEt)3](CO)nP5?n (9–11). Trimethylgermyl compounds M(GeMe3)(CO)nP5?n (12, 13) and the alkynylgermyl derivative Mn[Ge(CCPh)3](CO)3[PPh(OEt)2]2 (14a) were also prepared by allowing trichlorogermyl compounds 1–4 to react with either MgBrMe or Li+CCPh?, respectively, in thf. Treatment of compound Re(GeCl3)(CO)3[PPh(OEt)2]2 (4a) with SnCl2?2H2O gave the stannyl-germyl derivative Re[GeCl2(SnCl3)](CO)3[PPh(OEt)2]2 (15a). The complexes were characterised by spectroscopy and X-ray crystal structure determination of 4a, 5a, and 13a.  相似文献   

20.
The dimeric starting material [Ru(η6-p-cymene)(μ-Cl)Cl]2 reacts with N3,N3′-bis(diphenylphosphino)-2,2′-bipyridine-3,3′-diamine, 1 and P,P′-diphenylphosphinous acid-P,P′-[2,2′-bipyridine]-3,3′-diyl ester, 2 ligands to afford bridged dinuclear complexes [C10H6N2{NHPPh2-Ru(η6-p-cymene)Cl2}2], 3 and [C10H6N2{OPPh2-Ru(η6-p-cymene)Cl2}2], 4 in quantitative yields. These bis(aminophosphine) and bis(phosphinite) based Ru(II) complexes serve as active catalyst precursors for the transfer hydrogenation of acetophenone derivatives in 2-propanol and especially 4 acts as a good catalyst, giving the corresponding alcohols in 99% yield in 20 min (TOF ? 280 h−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号