首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《Journal of Crystal Growth》2006,286(2):407-412
The copper nitride thin films were prepared on glass substrate by RF magnetron sputtering method. At pure nitrogen atmosphere, the nitrogen flow rate affects the copper nitride thin films’ structures. Only a little part of nitrogen atoms insert into the body center of Cu3N structure and parts of nitrogen atoms insert into Cu3N crystallites boundary at higher nitrogen flow rate. But the indirect optical energy gap, Eopg, decreases with increasing nitrogen flow rate. The typical value of Eopg is 1.57 eV. In a nitrogen and argon mixture atmosphere, when the nitrogen partial was less than 0.2 Pa at 50 sccm total flow rate, the (1 1 1) peak of copper nitride appears. Thermal decomposition temperature of Cu3N thin films deposited in pure nitrogen and 30 sccm flow rate was less than 300 °C. The surface morphology was smooth.  相似文献   

2.
《Journal of Non》2007,353(11-12):1065-1069
In the present work the dependence of electrical properties of a-SiC:H thin films on annealing temperature, Ta, has been extensively studied. From the measurements of dark dc electrical conductivity, σD, in the high temperature range (from 283 up to 493 K), was found that the conductivity activation energy, Ea, is invariant for Ta  673 K and equal to 0.64 eV, whereas for Ta from 673 up to 873 K, Ea increases at about 0.2 eV reaching to a maximum value 0.85 eV at Ta = 873 K, suggesting the optimum material quality. This behavior of Ea as a function of Ta is mainly attributed to relaxation of the strain in the amorphous network, which is possibly combined with weak hydrogen emission for temperatures up to 873 K. For further increase of Ta (>873 K) the phenomenon of hydrogen emission, causes rapid decrease of Ea down to 0.24 eV at Ta = 998 K, deteriorating the material quality. These results are also supported by the measurements of dark dc electrical conductivity in the low temperature range (from 133 up to 283 K), where the dependence of the density of gap states at the Fermi level, N(EF), on annealing temperature presents the minimum value at Ta = 873 K. The Meyer–Nelder rule was found to hold for the a-SiC:H thin films for annealing temperatures up to 873 K. Finally, the dependence of dark dc electrical conductivity at room temperature, σDRT, on Ta showed to reflect directly the dependence of Ea on Ta.  相似文献   

3.
Synthesis of multi-walled carbon nanotubes (MWCNTs) doped silica xerogel films was reported in this work. A crucial step of introducing MWCNTs was achieved by functionalizing them by acid treatment to form stable and homogenous SiO2/MWCNTs sol. Scanning electron microscopy showed spherical particles in honeycomb network structure for undoped xerogel films whereas dispersion and wrapping of MWCNTs in silica matrix was observed for MWCNTs doped films. Various bond formations during the sol–gel process and surface modification were confirmed using Fourier transform infra-red and detailed study on the chemical bonding state of the films was carried out using X-ray photoelectron spectroscopy. Nanoindentation studies showed that the mechanical properties of MWCNTs doped xerogel film increase dramatically: higher modulus (E = 2.127 ± 0.095 GPa) and hardness (H = 0.035 ± 0.017 GPa) values than those of pristine xerogel film (E = 0.234 ± 0.058 GPa, H = 0.01 ± 0.003 GPa).  相似文献   

4.
《Journal of Non》2007,353(5-7):522-525
The kinetics of E′ centers ( Si) induced by 4.7 eV pulsed laser irradiation in dry fused silica was investigated by in situ optical absorption spectroscopy. The stability of the defects, conditioned by reaction with mobile hydrogen of radiolytic origin, is discussed and compared to results of similar experiments performed on wet fused silica. A portion of E′ centers and hydrogen are most likely generated by laser-induced breaking of Si–H precursors, while an additional fraction of the paramagnetic centers arise from another formation mechanism. Both typologies of E′ centers participate in the reaction with H2 leading to the post-irradiation decay of the defects. This annealing process is slowed down on decreasing temperature and is frozen at T = 200 K, consistently with the diffusion properties of H2 in silica.  相似文献   

5.
We investigated by in situ optical absorption measurements the effects induced by 4.7 eV UV laser irradiation on pure silica core optical fibers. Laser irradiation with 100 MW cm? 2 laser intensity generates in the fiber E′ centers which partially decay after irradiation due to their reaction with diffusing H2. An absorption band peaked at 5.3 eV is observed to grow in the post-irradiation stage with a kinetics anti-correlated to the decay of the 5.8 eV band of the E′ centers. The defect absorbing at 5.3 eV is proposed to be formed by trapping on pre-existing precursors of hydrogen atoms made available by breaking of H2 on E′. We also show by repeated irradiation experiments that the 5.3 eV-absorbing center is photochemically destroyed by 4.7 eV laser light, and we estimate the cross section of this process. Possible structural models for this defect are discussed.  相似文献   

6.
《Journal of Crystal Growth》2003,247(3-4):497-504
Structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis from zinc acetate (Zn(CH3COO)2 2H2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature. The growth of the films present three regimes depending on the substrate temperature, with increasing, constant and decreasing growth rates at lower, middle, and higher-temperature ranges, respectively. Growth rate higher than 15 nm min−1 can be achieved at Ts=543 K. ZnO film morphological and electrical properties have been related to these growth regimes. The films have been characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy.  相似文献   

7.
The crystallization parameters such as glass transition temperature (Tg), onset crystallization temperature (Tc), peak crystallization temperature (Tp) and enthalpy released (ΔHC) of the bulk Se–Te chalcogenide glass has been studied by using Differential Scanning Calorimeter (DSC), under non-isothermal condition at a heating rate of 20 K/min. The values of Tg, Tc, Tp and ΔHC with and without laser irradiation for different exposure time have been studied. The optical absorption of pristine and laser irradiated thermally evaporated Se–Te films has been measured. The films shows indirect allowed interband transition that is influenced by the laser irradiation. The optical energy gap has been found to decrease from 1.61 to 1.38 eV with increasing irradiation time from 5 to 20 min. The results have been analyzed on the basis of laser irradiation-induced defects in the film.  相似文献   

8.
Fabrizio Messina  Marco Cannas 《Journal of Non》2009,355(18-21):1038-1041
We report a study of the generation of silicon dangling bonds (E′ centers) induced in fused silica by 4.7 eV laser irradiation in the 10 < T < 475 K temperature range, carried out by in situ optical absorption spectroscopy. The generation of the defects, occurring by transformation of pre-existing precursors, results to be a thermally activated process, quenched below 150 K and with a 0.044 eV activation energy. At T > 200 K the induced defects undergo a post-irradiation decay due to their reaction with mobile H2. The interplay between generation and annealing gives rise to a bell-shaped temperature dependence of the concentration of induced E′ centers, peaking at 250 K.  相似文献   

9.
《Journal of Non》2007,353(13-15):1437-1440
Surface morphology and roughness of amorphous spin-coated As–S–Se chalcogenide thin films were determined using atomic force microscopy. Prepared films were coated from butylamine solutions with thicknesses d  100 nm and then annealed in a vacuum furnace at 45 °C and 90 °C for 1 h for their stabilization. The root mean square surface roughness analysis of surfaces of as-deposited spin-coated As–S–Se films indicated a very smooth film surface (with Rq values 0.42–0.45 ± 0.2 nm depending on composition). The nanoscale images of as-deposited films confirmed that surface of the films is created by domains with dimensions 20–40 nm, which corresponds to diameters of clusters found in solutions. The domain character of film surfaces gradually disappeared with increasing annealing temperature while the solvent was removed from the films. Middle-infrared transmission spectra recorded a decrease of intensities of vibration bands connected to N–H (at 3367 and 3292 cm−1) and C–H (at 2965, 2935 and 2880 cm−1) stretching vibrations. Temperature regions of solvent evaporation T = 60–90 °C and glass transformation temperatures Tg = 135–150 °C of spin-coated As–S–Se thin films were determined using a modulated differential scanning calorimetry.  相似文献   

10.
《Journal of Non》2006,352(52-54):5572-5577
Amorphous indium nitride (a-InN) thin films were deposited onto different substrates at temperatures <325 K using RF magnetron sputtering at a rate 0.3–0.4 Å/s. X-ray diffraction patterns reveal that the films grown on the substrates are amorphous. The optical absorption edge, ‘bandgap’ energy, Eg, of a-InN has been determined by spectroscopic ellipsometry over the energy range 0.88–4.1 eV. The absorption coefficient was obtained by the analysis of the measured ellipsometric spectra with the Tauc–Lorentz model. The Eg was determined using the modified Tauc and Cody extrapolations. The corresponding Tauc and Cody optical bandgaps were found to be 1.75 and 1.72 eV, respectively. These values are in excellent agreement with the values of the bandgap energy obtained as fitting parameters in the Tauc–Lorentz model: 1.72 ± 0.006 eV as well as by using spectrophotometry (1.74 eV) and photoluminescence (1.6 eV). The spectral dependence of the polarized absorptivities was also investigated. We found that there was a higher absorptivity for wavelengths <725 nm. This wavelength, ∼725 nm, therefore indicates that the absorption edge for a-InN is about 1.70 eV. Thus, the average value of the measured optical absorption of a-InN film is approximately 1.68 ± 0.071 eV.  相似文献   

11.
The Sn substituted Bi1.75Pb0.25Sr2Ca2Cu3-xSnxOδ glass ceramic (where x = 0, 0.1, 0.3, and 0.5) samples were prepared by the melt-quenching method. Crystallization kinetic studies of the samples were conducted using the differential thermal analysis (DTA). The oxidation behavior of the samples was also analyzed using the thermogravimetry analysis (TG). The DTA curves were registered with different heating rates (5, 10, 15, and 20 Kmin? 1) up to 1200 ± 0.5 K. The crystallization results were analyzed, and activation energy of crystallization process as well as the crystallization mechanisms and the effect of Sn substitution on powder glass ceramic were characterized. The glass transition temperature (Tg), the first crystallization peak temperature (Tx1) and the second crystallization peak temperature (Tx2) values were obtained as 713.0 ± 0.5–746.6 ± 0.5, 731.0 ± 0.5–760.8 ± 0.5 and 789.0 ± 0.5–820.1 ± 0.5 K, respectively. The activation energy (Ea) of crystallization was estimated from DTA results to be about 332.8 ± 0.1, 358.0 ± 0.1, 353.1 ± 0.1 and 348.9 ± 0.1 kJ/mol for x = 0, 0.1, 0.3 and 0.5, respectively, by using the Kissinger method. The Avrami parameter (n) values calculated at different Sn ratio from DTA results were found to be between 1.70 ± 0.01 and 2.57 ± 0.01, results reflect the growth of small particle with a decreasing nucleation rate.  相似文献   

12.
Ch. Mühlig  W. Triebel 《Journal of Non》2009,355(18-21):1080-1084
At 193 nm, weak stationary bulk absorption coefficients αstat in standard and experimental grade fused silica (type III) are measured in dependence on the laser fluence H and repetition rate f. The samples show non-linear increases αstat(H) for 0.2 ? H ? 5 mJ cm?2 pulse?1 (f = const.) and αstat(f) for 100 ? f ? 1000 Hz (H = const.). An absorption model, focussing on ArF laser induced E′ center generation and annealing, and the associated rate equations are applied to simulate the experimental data quantitatively. From the simulations, material parameters like the 2-photon absorption (TPA) coefficient, the E′ center absorption cross section σE and the hydrogen related E′ annealing rate are calculated. TPA coefficients values of 9.7 · 10?9 cm/W (standard grade material) and 1.4 · 10?8 cm/W (experimental grade material), E′ center cross sections of 4.5 · 10?18 and 3.6 · 10?18 cm2 and hydrogen annealing rates of 1.5 s?1 (standard grade) and 3.4 s?1 (experimental grade) are found.  相似文献   

13.
《Journal of Non》2007,353(24-25):2355-2362
EPR and optical absorption spectra of 0.5 mol% MnO2 doped xLi2O–(30  x)Na2O–69.5B2O3 (5  x  25) glasses have been studied. The EPR spectra exhibit resonance signals characteristic of Mn2+ ions. The resonance signal at g  2.0 is due to Mn2+ ions in an environment close to octahedral symmetry, whereas the resonances at g  4.3 and g  3.3 are attributed to the rhombic surroundings of the Mn2+ ions. The ionic character (A), the number of spins participating in resonance (N), optical band gap energies (Eopt) and Urbach energies (ΔE) show the mixed alkali effect (MAE) with composition. The present study gives an indication that the size of alkalis we choose, is also an important contributing factor in showing the MAE. The variation of N with temperature obeys the Boltzmann law. The optical absorption spectra show a single broad band at ∼21 000 cm−1 corresponding to the transition 6A1g(S)  4T1g(G) which exhibits a blue shift with x. The theoretical values of optical basicity (Λth) have also been evaluated.  相似文献   

14.
K.A. Aly 《Journal of Non》2009,355(28-30):1489-1495
Amorphous Ge10Se90?xTex (with x = 0, 5, 10 and 15 at.%) thin films were prepared by thermal evaporation method. The optical transmission spectra of these films were measured in the wavelength range of 500–2500 nm in order to drive the refractive index and the absorption coefficient of these films. Applying the analytical expressions proposed by Swanepoel, enabling the calculations of optical constants of thin films with non-uniform thickness with high accuracy. Furthermore, the dispersion of the refractive index is discussed in terms of the single-oscillator Wemple and DiDomenico model. It was found that, the mechanism of the optical absorption follows the rule of the allowed non-direct transition. The optical band gab, Eg, and the oscillator energy, Eo, decrease while the dispersion energy, Ed, increases by increasing Te content. The relationship between the obtained results and the chemical compositions of the Ge10Se90?xTex thin films were discussed in terms of the chemical bond approach, the excess of Se–Se homopolar bonds and the cohesive energy (CE).  相似文献   

15.
Thulium-doped optical fibre amplifiers (TDFA) are developed to extend the optical telecommunication wavelength division multiplexing (WDM) bandwidth in the so-called S-band (1460–1530 nm). The radiative transition at 1.47 μm (3H4  3F4) competes with a non-radiative multi-phonon de-excitation (3H4  3H5). The quantum efficiency of the transition of interest is then highly affected by the phonon energy (Ep) of the material. For reliability reasons, oxide glasses are preferred but suffer from high phonon energy. In the case of silica glass, Ep is around 1100 cm?1 and quantum efficiency is as low as 2%. To improve it, phonon energy in the thulium environment must be lowered. For that reason, aluminium is added and we explore three different core compositions: pure silica, and silica slightly modified with germanium or phosphorus. The role of aluminium is studied through fluorescence decay curves, fitted according to the continuous function decay analysis. From this analysis, modification of the thulium local environment due to aluminium is evidenced.  相似文献   

16.
《Journal of Non》2006,352(9-20):1045-1048
Undoped hydrogenated silicon films have been prepared from a gas mixture of silane and hydrogen, varying substrate temperature from 180–380 °C in an ultrahigh vacuum system using RFPECVD technique. XRD and Raman measurements enable us to know that the films are microcrystalline throughout the substrate temperature range. Bond formation of the SiH films at different substrate temperature is studied through different characterisation techniques like Fourier transform infrared spectroscopy and hydrogen evolution study. The infrared absorption spectroscopy and hydrogen evolution study reveal two types of growth: the formation of a void rich material at low Ts (∼180 °C) and a compact material at comparatively higher Ts.  相似文献   

17.
Hydrogenated amorphous silicon thin films doped with chalcogens (Se or S) were prepared by the decomposition of silane (SiH4) and H2Se/H2S gas mixtures in an RF plasma glow discharge on 7059 corning glass at a substrate temperature 230 °C. The illumination measurements were performed on these samples as a function of doping concentration, temperature and optical density. The activation energy varied with doping concentration and is higher in Se-doped than S-doped a-Si:H thin films due to a low defect density. From intensity versus photoconductivity data, it is observed that the addition of Se and S changes the recombination mechanism from monomolecular at low doping concentration films to bimolecular at higher doping levels. The photosensitivity (σph/σd) of a-Si, Se:H thin films decreases as the gas ratio H2Se/SiH4 increased from 10?4 to 10?1, while the photosensitivity of a-Si, S:H thin films increases as the gas ratio H2S/SiH4 increased from 6.8 × 10?7 to 1.0×10?4.  相似文献   

18.
Fine particles of a face-centered-cubic phase of Ni covered with a graphite layer were prepared and embedded in a PBT-block-PTMO polymer at a concentration of 0.1 wt%. The mean crystalline size of Ni varied from 8 to 30 nm. A magnetic resonance study of the obtained nanocomposites was carried out in the 4–300 K temperature range using an electron paramagnetic resonance spectrometer. An almost symmetrical and very intense magnetic resonance line was recorded for all the investigated samples. The resonance line was centered at g = 2.253(2) (the resonance field Hr = 3003(1) Gs) and had a peak-to-peak linewidth ΔHpp = 693(2) Gs at room temperature. The amplitude of the resonance line increased with a temperature increase in the low temperature range (T < 40 K) and in the high temperature range (T > 100 K) but was constant at intermediate temperatures. The resonance field Hr decreased and linewidth ΔHpp increased as the temperature decreased from room temperature what was similar to the changes observed for other systems of nanoparticles. The thermal gradient of the resonance field, ΔHr/ΔT, strongly depended on the temperature range. The temperature shift of the resonance field and the linewidth were analyzed in terms of the demagnetizing fields of nonspherical agglomerates. A strong change of linewidth and resonance field was registered below 40 K due to the freezing of the spin system’s dynamical magnetic fluctuations. A comparison was made of the results obtained on the Ni/C with the previous measurements on γ-Fe2O3 nanoparticles embedded in a copolymer.  相似文献   

19.
We have investigated the effect of Ar dilution on the deposition process of intrinsic nc-Si:H (hydrogenated nanocrystalline silicon) thin films used as active layers of top-gate TFTs, in order to improve the TFTs performances. The nc-Si:H films were deposited by plasma enhanced chemical vapor deposition (PECVD) at low temperature (165 °C) and the related TFTs were fabricated with a maximum process temperature of 200 °C. During the nc-Si:H films deposition, the SiH4 fraction and the total flow of the diluting gases Ar + H2 mixture was kept constant, H2 being substituted by Ar. We have pointed out the active role played by the metastable states of excited Ar atoms in both the dissociation of SiH4 and H2 by quenching reactions in the plasma. The role of the atomic hydrogen during the film deposition seems to be promoted by the addition of argon into the discharge, leading to an increase of the deposition rate by a factor of about three and an enhancement of the crystalline quality of the nc-Si:H films. This effect is maximized when the Ar fraction in the Ar + H2 gases mixture reaches 50%. The evolution with Ar addition of the carriers mobility of the related TFTs is closely connected to the evolution of the crystalline fraction of the intrinsic nc-Si:H film. Mobilities values as high as 8 cm2 V?1 s?1 are obtained at the Ar fraction of 50%. For higher Ar fractions, the fall of the mobility comes with a degradation of the IDVG transfer characteristics of the processed TFTs due to a degradation of the nc-Si:H films quality. OES measurements show that the evolution of the Hα intensity is closely connected to the evolution of the deposition rate, intrinsic films crystalline fraction and TFTs mobility, providing an interesting tool to monitor the TFTs performances.  相似文献   

20.
A roll-to-roll PECVD system for thin film silicon solar cells on steel foil has been developed by ECN in collaboration with Roth and Rau AG. It combines MW–PECVD for fast deposition of intrinsic Si and novel linear RF sources, which apply very mild deposition conditions, for the growth of doped Si layers. The RF and MW sources can be easily scaled up to deposition widths of up to 150 cm. Here, we report on n-type doping, achieved by RF–PECVD from a H2/SiH4/PH3 mixture in the reaction chamber. The best n-type a-Si:H layers showed Eact = 0.27 eV and σd = 2.7 × 10?3 S/cm. Also thin layers down to 20 nm were of device quality and were deposited at a rate of 0.4 Å/s. Furthermore, n-type μc-Si:H layers with thicknesses of 150 nm, with Eact = 0.034 eV and σd = 2 S/cm were grown. Good quality n-type μc-Si:H layers can be made for layer thicknesses down to 50 nm at a rate of 0.15 Å/s. To conclude, the novel RF source is well-suited for the growth of n-doped a-Si:H and μc-Si:H layers for roll-to-roll solar cell production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号