首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alteration behavior of glass comprising five oxides (61 ? x)SiO2–17B2O3–18Na2O–4CaO–xZrO2 was studied during static leach tests in a buffer solution at 90 °C and with a glass-surface-area-to-solution-volume (SA/V) ratio of 15 cm?1. The morphological evolution of altered glasses investigated by small-angle X-ray scattering (SAXS) exhibits a strong dependence with the zirconium content in the glass. The experiments were compared with modeling results using Monte Carlo simulation. The model has been improved to simulate the alteration kinetics and alteration layer morphology, considering zirconium atoms at coordination number 6. The simulations exhibit very good agreement with experimental results, showing relations between the alteration rate and the restructuring altered layer. The model is used to interpret experimental observations by proposing a porosity closure mechanism in the altered layer to account for the diminishing alteration rate. For high zirconium concentrations, the simulation highlights the existence of percolation pathways responsible for a complete alteration of the glass. Zirconium has a hardening effect that limits the dissolution of neighboring atoms; this effect is favorable in terms of the glass alteration kinetics, but by inhibiting silicon recondensation it prevents complete closure of the porosity and the glass is completely altered.  相似文献   

2.
A 5-oxide glass (62.5SiO2, 16.6B2O3, 13.1Na2O, 6.0CaO, 1.8ZrO2) was leached at 90 °C at a high glass-surface-area-to-solution-volume ratio (SA/V = 80 cm?1). Its dissolution rate diminished over time until it became unmeasurable. The alteration layer was characterized by 29Si isotopic tracing in the leaching solution. ToF-SIMS elemental profiles showed that glass dissolution ceased due to clogging of the gel porosity at the gel/solution interface. One of the hypotheses proposed to account for the rate drop observed during borosilicate glass alteration is based on morphological changes in the alteration gel over time. Monte Carlo modeling of glass alteration, especially with simple glasses, indicates a clogging of the porosity on the external portion of the gel (near the solution/gel interface) after densification of the layer by silicon precipitation, but this phenomenon had never previously been directly observed experimentally. The initial results obtained by isotopic tracing provide new data that appears to confirm this hypothesis.  相似文献   

3.
Mixed alkali earth element containing high nitrogen content oxynitride glasses (Ca1?xAEx)1.2(1)SiO1.9(1)N0.86(6), with AE = Mg, Sr, Ba, x  0.30 for Mg and x  0.46 for Sr and Ba, and nominally constant (Ca/AE):Si:O:N ratios were prepared in order to investigate the compositional dependencies of physical properties on alkali earth element composition. The glasses were prepared by melting mixtures of AEH2, CaH2, SiO2 and Si3N4 powders in nitrogen atmosphere at 1600–1700 °C and characterized by X-ray powder diffraction and scanning and transmission electron microscopy. Cation and anion glass compositions were determined by respectively energy dispersive X-ray analysis and combustion analysis. The determined physical properties were density, glass transition temperature, Vickers hardness, and refractive index. The physical properties were found to vary linearly with the degree of substitution of Ca by the AE elements. The density of the glasses increases substantially upon substitution by Sr and Ba, up to 3.99 g/cm3. Glass transition temperatures are found to be higher for Mg and Sr substituted glasses, ca. 900 °C, in comparison with Ba substituted glasses, ca. 850 °C. The hardness increases upon substitution by Mg, up to 12.2 GPa at x = 0.46, and decreases upon substitution by Sr and Ba. The refractive index increases upon substitution by Sr and Ba, up to 1.97 for Ba at x = 0.46, and decreases upon substitution by Mg. The transparency of the glasses was found to increase upon increasing substitution by Mg and completely transparent glasses were obtained for x = 0.24.  相似文献   

4.
《Journal of Non》2007,353(13-15):1261-1263
Field emission-scanning electron microscopy (FE-SEM) and electric force microscopy (EFM) measurements were carried out on bulk Agx(Ge0.25Se0.75)100−x glasses with x = 5 and 15 at.%. The presence of chemical contrasts and electrical inhomogeneity throughout the samples indicated that the glasses were phase separated. Moreover it appears that while silver-rich nodules of ∼1 μm were embedded in a silver-poor connecting phase in the glass containing 5 at.% Ag, it was the opposite that occurred in the glass containing 15 at.% Ag. Such an inversion explains the large difference of seven orders of magnitude in the conductivity of the two glasses.  相似文献   

5.
Bulk glasses of a-Se75Te25 ? xGax (x = 0, 5, 10 and 15 at wt %) have been prepared by melt quenching technique. These samples were structurally characterized by using X-ray diffraction. Kinetic of crystallization in these glasses was studied under non-isothermal conditions using differential thermal analysis (DTA). DTA is performed at different heating rates of 5, 10, 15, 20 and 30 °C/min. The values of glass transition (Tg) and crystallization peak temperature (Tp) are found to be composition and heating-rate dependent. The obtained results have been analyzed in terms of activation energy of glass transition (Eg) using Kissinger's and Mahadevan et al. relations. Values of Eg obtained by the two relations are in agreement with each other. The results indicate that the crystallization process is a three-dimensional growth.  相似文献   

6.
Characterization of B2O3 and/or WO3 containing tellurite glasses was realized in the 0.80TeO2–(0.20 ? x)WO3 ? xB2O3 system (0  x  0.20 in molar ratio) by using differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry techniques. Glasses were prepared with a conventional melt-quenching technique at 750 °C. To recognize the thermal behavior of the glasses, glass transition and crystallization temperatures, glass stability value, glass transition activation energy, fragility parameter were calculated from the thermal analyses. Density, molar volume, oxygen molar volume and oxygen packing density values were determined to investigate the physical properties of glasses. Fourier transform infrared spectra were interpreted in terms of the structural transformations on the glass network, according to the changing B2O3 and/or WO3 content. Crystallization behavior of the glasses was investigated by in situ X-ray diffraction measurements and microstructural characterization was realized by scanning electron microscopy and energy dispersive X-ray spectrometry analyses.  相似文献   

7.
The mixed glass former effect (MGFE) is defined as a non-linear and non-additive change in the ionic conductivity with changing glass former fraction at constant modifier composition between two binary glass forming compositions. In this study, mixed glass former (MGF) sodium borophosphate glasses, 0.35 Na2O + 0.65 [xB2O3 + (1 ? x)P2O5], 0  x  1, which have been shown to have a strong positive MGFE, have been prepared and their physical properties, density and molar volume, have been examined as predictors of structural change. The density exhibits a strong positive non-linear and non-additive change in the density with x and a corresponding negative non-linear and non-additive change in the molar volume. In order to understand the structural origins of these changes, a model of the molar volume was created and best-fit to the experimentally determined molar volumes in order to determine the volumes of the short range order (SRO) structural units in these glasses, how these volume change from the molar volumes of the binary glasses, and how these volumes change across the range of x in the ternary glasses. The best-fit model was defined as the model that required the smallest changes in the volumes of the ternary phosphate and borate SRO structural groups from their values determined by the densities of the binary sodium phosphate and sodium borate glasses. In this best-fit molar volume model, it was found that the volumes of the various phosphate and borate SRO structural groups decreased by values ranging from a minimum value of ~ 1% for x = 0.1 and 0.9 to a maximum value of ~ 6% for the phosphate and ~ 9% for the borate SRO groups at the minimum in molar volume at x = 0.4. The free volume was found to have a negative deviation from linear which is unexpected given the positive deviation in ionic conductivity.  相似文献   

8.
Potassium-lithium niobiosilicate (KLiNS) glasses with a composition of (27 ? x)K2O · xLi2O · 27Nb2O5 · 46SiO2 (x = 0, 3, 12 and 20) have been synthesized by a melt-quenching method. The glass structure and devitrification behavior have been studied by Raman spectroscopy, DTA, and XRD. By increasing the lithium content, less distorted niobium octahedra increase, indicating a niobium clustering. This change strongly affects the crystallization behavior. In the glasses x = 0 and x = 3, just above Tg, only nanocrystals of an unidentified phase are formed, while for x = 12 and x = 20 potassium lithium niobate (KLN) solid solutions with tetragonal tungsten–bronze structure crystallize by bulk nucleation. In these glasses, LiNbO3 crystallizes at higher temperature by surface nuclei. Ultimately, it is possible to produce nanostructured glasses based on KLN nanocrystals, by partial replacement of K by Li.  相似文献   

9.
The performance of phosphate glasses as a catalyst for water decomposition and a proton conductor was investigated. Glasses with a composition of 30Na2O–10BaO–30P2O5–(30?x)WO3xNb2O5 (5 < x < 25) decompose water vapor and generate hydrogen at 500 °C. The best decomposition performance was observed on a specimen with the Nb2O5 composition of x = 15. A part of hydrogen produced on the glass surface changes to protons by reducing W6+ ions and penetrates into the glass. The electron is the dominant charge carrier in the electric conduction of W-rich glasses, whereas proton conduction is predominant in Nb-rich glasses in hydrogen atmosphere. A Raman scattering experiment revealed that Nb contributes to depolymerize the –P–O–P– chains in the phosphate glass producing non-bridging oxygen. A possible model was proposed for the water decomposition and proton conduction processes.  相似文献   

10.
V. Simon  C. Albon  S. Simon 《Journal of Non》2008,354(15-16):1751-1755
The in vitro behavior of xAg2O (100 ? x)[50P2O5 · 30CaO · 20Na2O] glasses (0.14 ? x ? 20 mol%) is investigated in simulated body fluid (SBF) mainly with respect to bioactivity and silver ions release. In order to estimate the biodegradability and bioactivity, the samples were soaked in SBF, which has almost equal ions concentration to those of human blood plasma, and kept at 37 °C for fixed periods of time up to 18 days. After the fixed periods of time analyses were performed on the SBF solutions. Calcium and silver ions concentration of SBF after different soaking times of the glass samples were primarily examined. Conductivity data support the assumption that the released silver ions are reduced in SBF and their release is obstructed by growth of the bioactive layer on the glass surface. X-ray diffraction and infrared analysis attest the development on glass surface of a hydroxyapatite type layer.  相似文献   

11.
S. Sen  S. Joshi  B.G. Aitken  S. Khalid 《Journal of Non》2008,354(40-41):4620-4625
The nearest-neighbor coordination environments of Te atoms in GexTe100?x glasses with x = 15 and 20 and in AsxTe100?x glasses with 40 ? x ? 65 have been studied with Te K-edge EXAFS spectroscopy. The average coordination number of Te atoms in all glasses is found to be ~2.0 and no violation of the 8-N rule is observed. The compositional makeup of the first coordination shell of Te atoms indicates that chemical order is largely preserved in both glass-forming binary systems. Sudden changes in the Te coordination environment and violation of chemical order are observed at the stoichiometric As40Te60 glass implying formation of a constrained network. The compositional dependence of the physical properties in both systems can be correlated to short-range chemical order.  相似文献   

12.
The scope of this work is to determine the crystalline phases of devitrified barium magnesium phosphate glasses and the glass composition which presents the best resistance to crystallization. Barium magnesium phosphate glasses with composition xMgO · (1 ? x)(60P2O5 · 40BaO) mol% (x = 0, 0.15, 0.3, 0.4, 0.5, and 0.6) were analyzed by differential thermal analysis (DTA) to evaluate the thermal stability against crystallization, and X-ray diffraction (XRD) to identify the crystalline phases formed after devitrification. The glass transition temperature (Tg) increases as the MgO content increases. The maximum temperature attributed to the crystallization peak in the DTA curve (Tc) increases when x increases in the range 0 ? x ? 0.3, and it decreases for x > 0.3. The most thermally stable glass composition against crystallization is for x = 0.3. After the devitrification, the number of coexisting crystalline phases increases as the MgO content increases. For x = 0.3 there is the coexistence of γBa(PO3)2 and Ba2MgP4O13 phases for devitrified glasses. The trend of the Tc is explained based on the assumptions of changes in the Mg2+ coordination number and the amphoterical features of MgO.  相似文献   

13.
New quaternary chalcogenide GexSb40?xS50Te10 (x = 10, 20 and 27 at.%) and GexSb40?xS55Te5 (x = 20 and 27 at.%) glasses have been synthesized and the compositions have been characterized applying prompt gamma-ray activation analyses, neutron diffraction, and material density measurements. Using the experimental data, the basic physical parameters, such as average atomic volume, packing density, compactness, average coordination number, number of constrains, average heat of atomization and cohesive energy, of the synthesized glasses are evaluated and the results are discussed in a function of glass composition.  相似文献   

14.
《Journal of Non》2006,352(28-29):3121-3125
The structure of xWO3 · (100  x)[2P2O5 · PbO] glass system with 0  x  50 mol% was investigated by Raman spectroscopy. The characteristic bands of these glasses due to the stretching and bending vibrations were identified and analyzed by the increasing of WO3 content. This fact allowed us to identify the specific structural units which appear in these glasses and thus to point out the network modifier role of tungsten oxide for low concentrations and its former role at high concentrations.  相似文献   

15.
We report the results of a systematic study of the thermal and optical properties of a new family of tellurite glasses, TeO2–ZnO–BaO (TZBa), as a function of the barium oxide mole fraction and compare them with those of TeO2–ZnO–Na2O (TZN). The characteristic temperatures of this new glass family (glass transition, Tg, crystallization, Tx, and melting, Tm) increase significantly with BaO content and the glasses are more thermally stable (greater ΔT = Tx ? Tg) than TZN glasses. Relative to these, Raman gain coefficient of the TZBa glasses also increases by approximately 40% as well as the Raman shift from ~ 680 cm? 1 to ~ 770 cm? 1. The latter shift is due to the modification of the glass with the creation of non-bridging oxygen ions in the glass network. Raman spectroscopy allows us to monitor the changes in the glass network resulting from the introduction of BaO.  相似文献   

16.
《Journal of Non》2007,353(44-46):4076-4083
Structural and thermal properties are reported for a range of caesium oxide-containing alkali borosilicate glasses, of the form xCs2O(100  x)ZMW (0 < x < 10), where ZMW represents a variety of simulated base-glasses. Glass densities increase and glass transition temperatures decrease with increase in caesium oxide concentration. Mass-loss from the melt is found to depend on composition in the same manner as the fraction of silicon Q3 units, resolved from 29Si MAS NMR, and is related to the presence of danburite medium-range order units, resolved from 11B MAS NMR. Volatilization is shown to occur even in the absence of caesium oxide and the mixed alkali borosilicate composition of the volatile species, evolved from the melt at high temperature, is independent of the starting composition of the glass.  相似文献   

17.
ZnO–B2O3–P2O5 glasses doped with MoO3 were investigated in the series (100?x)[0.5ZnO–0.1B2O3–0.4P2O5]–xMoO3, where bulk glasses were obtained by slow cooling in air within the compositional region of 0 ? x ? 60 mol% MoO3. The incorporation of MoO3 into the parent zinc borophosphate glass results in a weakening of bond strength in the structural network, which induces a decrease in chemical durability and glass transition temperature. Raman spectra reflect the incorporation of molybdate groups into the glass network of the studied glasses by the presence of the polarized vibrational band at ≈976 cm?1 ascribed to the MOx symmetric stretching vibrations and the depolarized band at ≈878 cm?1 ascribed to the Mo–O–Mo stretching vibration. The incorporation of molybdate units into the glass network results in the depolymerization of phosphate chains and the formation of P–O–Mo bonds, as reflected in Raman and 31P NMR spectra. According to the 11B MAS NMR spectra, tetrahedral B(OP)4?x(OMo)x units are formed in the glasses, whereas only a small amount of BO4 units is converted to BO3 units in the MoO3-rich glasses.  相似文献   

18.
Glasses in the ternary system xCuO?(100 ? x)[55B2O3·45ZnO] (0  x  20 mol%) have been prepared by melting at 1200 °C and rapidly cooling at room temperature. The effect of copper ions addition in 55B2O3·45ZnO glass matrix together with the matrix effect on paramagentic behavior has been investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, differential thermal analysis (DTA), electron paramagnetic resonance (EPR), ultraviolet–visible (UV–VIS) spectroscopy and density measurements. The increase of the number of non-bridging oxygen (NBO) atoms as a function of CuO content in these glasses leads to the decrease of glass polymerization which reduces the stability of the glasses and favors the association of copper ions in clusters. This leads to the major changes of structural and optical properties of the studied glasses as can be seen from the data obtained by FTIR and EPR spectroscopies.  相似文献   

19.
Glasses with a high content of niobium oxide are of significant interest for electro-optics and nonlinear optics. In the present paper we report the results of the investigation of the submicroscopic structure and nonlinear optical properties of (1-x)KNbO3xSiO2 (KNS) glasses (x = 0.05–0.30) by XRD, SANS, electron microscopy and second harmonic generation (SHG) technique. Vitreous samples were fabricated by rapid melt cooling, via pressing the melt by steel plates, quenching between rotating metal rolls or splat cooling in air or nitrogen flow. Glasses with x < 0.15 are shown to possess a micro-inhomogeneous structure with regions enriched by SiO2. On the contrary, as-quenched glasses with x > 0.15 are found by SANS to be homogeneous, but form nanostructures enriched by SiO2 after heat-treatment. At temperatures below ~(Tg + 50 °C), SiO2-enriched regions grow slightly, whereas their chemical composition shifts considerably closer to SiO2. The data on the nano-inhomogeneous structure enables clarifying the complicated Tg(x) dependence of KNS glasses. SHG-active KNbO3 phase precipitates at later stages of crystallization when the glass starts to lose its transparency, and crystallization of perovskite-like KNbO3 is accompanied by the enhancement of SHG efficiency by several orders of magnitude.  相似文献   

20.
《Journal of Non》2005,351(40-42):3356-3360
The thermal, mechanical, chemical properties and the structure of (50  x)BaO–xZnO–50P2O5 (0  x  50 mol%) glasses were investigated. For these glasses, the density (ρ), glass transition temperature (Tg), dissolution rate (DR), 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) spectra and Fourier-transformed infrared (FTIR) spectra were determined. As BaO was replaced by ZnO, all the properties were similarly decreased in density, Young’s modulus, Tg and water resistance. FTIR analyses revealed a shortening of phosphate chains by the shift of (P–O–P)as band to a higher wave number owing to the substitution ZnO of BaO. The NMR spectra showed that the replacement of BaO by ZnO decreased the concentration of Q2-tetrahedral sites and increased that of Q1-tetrahedral sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号