首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assignments of the vibrational fundamentals of cis- and trans-1,3,5-hexatriene are reevaluated with new infrared and Raman spectra and with quantum chemical predictions of intensities and anharmonic frequencies. The rotational structure is analyzed in the high-resolution (0.0013-0.0018 cm−1) infrared spectra of three C-type bands of the trans isomer and two C-type bands of the cis isomer. The bands for the trans isomer are at 1010.96 cm−1 (ν14), 900.908 cm−1 (ν16), and 683.46 cm−1 (ν17). Ground state (GS) rotational constants have been fitted to the combined ground state combination differences (GSCDs) for the three bands of the trans isomer. The bands for the cis isomer are at 907.70 cm−1 (ν33) and 587.89 cm−1 (ν35). GS rotational constants have been fitted to the combined GSCDs for the two bands of the cis isomer and compared with those obtained from microwave spectroscopy. Small inertial defects in the GSs confirm that both molecules are planar. Upper state rotational constants were fitted for all five bands.  相似文献   

2.
Emission spectra of SrH and SrD have been studied at high resolution using a Fourier transform spectrometer. The molecules have been produced in a high temperature furnace from the reaction of strontium metal vapor with H2/D2 in the presence of a slow flow of Ar gas. The spectra observed in the 18 000–19 500 cm?1 region consist of the 0–0 and 1–1 bands of the E2Π–X2Σ+ transition of the two isotopologues. A rotational analysis of these bands has been obtained by combining the present measurements with previously available pure rotation and vibration–rotation measurements for the ground state, and improved spectroscopic constants have been obtained for the E2Π state. The present analysis provides spectroscopic constants for the E2Π state as ΔG(½) = 1166.1011(15) cm?1, Be = 3.805503(32) cm?1, αe = 0.098880(47) cm?1, re = 2.1083727(89) Å for SrH, and ΔG(½) = 839.1283(23) cm?1, Be = 1.918564(15) cm?1, αe = 0.034719(23) cm?1, re = 2.1121943(83) Å for SrD.  相似文献   

3.
The first high-resolution absorption spectrum of the 5ν3 band of the 14N16O2 molecule at 7766.071 cm?1 was recorded by high sensitivity CW-Cavity Ring Down Spectroscopy between 7674 and 7795 cm?1. The noise equivalent absorption of the recordings was αmin≈1×10?10 cm?1. The assignments involve energy levels of the (0,0,5) vibrational state with rotational quantum numbers up to Ka=9 and N=47. The set of the spin–rotation energy levels were reproduced within their experimental uncertainty using a theoretical model, which takes explicitly into account the Coriolis interactions between the spin rotational levels of the (0,0,5) vibrational state and those of the (0,2,4) dark state together with the electron spin–rotation resonances within the (0,0,5) and (0,2,4) states. Precise values were determined for the (0,0,5) vibrational energy rotational, spin-rotational constants and for the (0,2,4)?(0,0,5) coupling constants. In addition the (0,2,4) rotational and spin-rotational constants were estimated. Using these parameters and the value of the transition dipole moment operator determined from a fit of a selection of experimental line intensities, the synthetic spectrum of the 5ν3 band was generated and is provided as Supplementary material.  相似文献   

4.
We present the gas phase spectrum of singly deuterated hydrogen peroxide, HOOD, in its vibrational ground state, recorded by the high resolution Fourier-transform interferometer located at the AILES synchrotron beamline connected to SOLEIL. More than 1000 transitions in the range from 20 to 143 cm?1 were assigned, leading to a set of preliminary rotational and centrifugal distortion constants determined by least squares fit analysis. All transitions are split by the tunneling motion of a hindered internal rotation. The splitting has been determined to be 5.786(13) cm?1 in the torsional ground state and it shows a dependence on the rotational quantum number Ka. Some perturbations were not treated yet, but the present analysis permits to obtain a preliminary set of parameters.  相似文献   

5.
Fourier transform spectra of oxirane (ethylene oxide, c-C2H4O) have been recorded in the 730–1560 cm?1 (6.4–13.7 μm) spectral region using a Bruker IFS125HR spectrometer at a resolution of 0.0019 cm?1. A total of six vibration bands, ν15, ν12, ν5, ν3, ν10 and ν2, have been observed and analyzed. The corresponding upper state ro-vibrational levels were fit using Hamiltonian matrices accounting for various interactions. Satisfactory fits were obtained using the following polyads {151, 121, 51} and {101, 21} of interacting states. As a result, an accurate and extended set of Hamiltonian constants were obtained. The following band centers were derived: ν0 (ν15) = 808.13518(60) cm?1, ν0 (ν12) = 822.27955(37) cm?1, ν0 (ν5) = 876.72592(15), ν0 (ν3) = 1270.37032(10) cm?1, ν0 (ν10) = 1471.35580(50) cm?1 and ν0 (ν2) = 1497.83309(15) cm?1 where the uncertainties are one standard deviation.  相似文献   

6.
Nearly 4800 features of ammonia between 6300 and 7000 cm?1 with intensities ≥4×10?24 cm?1/(molecule·cm?2) at 296 K were measured using 16 pure NH3 spectra recorded at various temperatures (296–185 K) with the McMath–Pierce Fourier Transform Spectrometer at Kitt Peak National Observatory, AZ. The line positions and intensities were retrieved by fitting individual spectra based on a Voigt line shape profile and then averaging the values to form the experimental linelist. The integrated intensity of the region was 4.68×10?19 cm?1/(molecule·cm?2) at 296 K. Empirical lower state energies were also estimated for 3567 absorption line features using line intensities retrieved from 10 spectra recorded at gas temperature between 185 and 233 K. Finally, using Ground State Combination Differences (GSCDs) and the empirical lower state energy estimates, the quantum assignments were determined for 1096 transitions in the room temperature linelist, along with empirical upper state energies for 434 levels. The assignments correspond to seven vibrational states, as confirmed from recent ab initio calculations. The resulting composite database of 14NH3 line parameters will provide experimental constraints to ab initio calculations and support remote sensing of gaseous bodies including the atmospheres of Earth, (exo)planets, brown dwarfs, and other astrophysical environments.  相似文献   

7.
The infrared spectrum of methyl nitrite CH3ONO has been recorded at a spectral resolution of 0.003 cm?1 using a Fourier-transform spectrometer Bruker IFS125HR. The ν8 band of the cis isomer has been reinvestigated in the 780–880 cm?1 spectral range to complete the study made by Goss et al. (2004) [3] and to fit the internal rotor splittings. The BELGI-IR program, which enables us to treat an isolated infrared band for asymmetric molecules containing one internal methyl rotor has been used for the analysis and predictions of spectra. Finally 1036 lines (913 A-type and 123 E-type lines for J≤50 and Ka≤28) have been assigned for the cis isomer and fitted with a standard deviation of 0.00047 cm?1.Furthermore, for the first time, the ν9 band of cis-CH3ONO was investigated in the 540–660 cm?1 spectral range and rather large internal rotation splittings were also observed at higher J values. For the ν9 band, the effective approach performed with the BELGI-IR program allowed us to analyze and reproduce 682 lines up to J=50 and Ka=18 with a standard deviation of 0.00051 cm?1. The multiple vibration–rotation–torsion interactions, which are likely to occur between the excited v9=1 and v8=1 states and the torsional manifolds are discussed.  相似文献   

8.
In our effort to systematically study the far infrared (FIR) spectra of asymmetrically mono deuterated methanol (CH2DOH) and thereby obtain the transition wavenumbers with better and better accuracy (Mukhopadhyay, 2016a,b), the complete Fourier transform (FT) spectra from FIR to infrared (IR) vibrational bands (in the range 50–1190 cm−1) have been re-recorded using the Synchrotron Radiation Source at the Canadian Light Sources in Saskatchewan, Canada. The resolution of the spectrum is unprecedented, reaching beyond the Doppler limited resolution as low as about 0.0008 cm−1 with a signal to noise (S/N) ratio is many fold better than that can be obtained by commercially available FT spectrometer using thermal sources (e.g., Globar). Spectra were also recorded beyond 1190 cm−1 to about 5000 cm−1 at a somewhat lower resolution of 0.002–0.004 cm−1. In this report the analysis of the b-type and c-type torsional - rotational spectra in the ground vibrational state corresponding to gauche- (e1/o1) to gauche- (e1/o1) and gauche- (e1/o1) to trans- (e0) states in the ground vibrational state are reported and an atlas of the wavenumber for about 2500 FIR assigned absorption lines has been prepared. The transitions within a given sub-band are analyzed using state dependent expansion parameters and the Q-branch origins. The data from previous results (Mukhopadhyay, 2016a,b) along with the present work allowed a global analysis yielding a complete set of molecular parameters. The state dependent molecular parameters reproduce the experimental wavenumbers within experimental uncertainty. In addition, the sensitivity of the spectrum allowed observation of forbidden transitions previously unobserved and helped reassignment of rotational angular momentum quantum numbers of some ΔK = ±1, Q-branch transitions in highly excited states recently reported in the literature. To our knowledge the wavenumbers reported in the present work are the most accurate so far reported in the literature and represent the highest resolution spectra for this molecular species.  相似文献   

9.
The far infrared spectrum of HCOOH was recorded at a high resolution (0.0009 cm?1) and long path length (72 m) at the far-infrared beamline, Canadian Light Source. Spectra were recorded in the region 62–300 cm?1, showing transitions from the trans-isomer.Ground state rotational transitions with Ka up to 30, were identified up to 175 cm?1, extending the observation reported in the literature. A total of 3321 transitions were assigned and fitted together with previous (4149) published data. An improved set of rotational parameters was obtained adopting the symmetric top (A) reduction of the rotational Hamiltonian in the Ir representation. The newly measured far infrared transitions allowed the determination of all diagonal and off diagonal 8th order parameters L and of some of the diagonal 10th order parameters P.  相似文献   

10.
The pure rotational spectra of three silicon isotopologues of HSiI and two isotopologues of DSiI have been recorded by pulsed-jet Fourier transform microwave (FTMW) spectroscopy. Neon was passed over dry ice cooled H3SiI or D3SiI and introduced into the pulsed valve of the FTMW spectrometer. The monoiodosilylenes HSiI and DSiI were produced in situ with a 1000 V DC-discharge nozzle. Only a-type transitions occur in monoiodosilylene from 6 to 26 GHz. We observe Ka = 0 a-type transitions for H28SiI, H29SiI, H30SiI, and D29SiI, and both Ka = 0 and 1 a-type transitions for D28SiI. Rotational constants, centrifugal distortion constants, iodine nuclear quadrupole coupling constants, and nuclear spin–molecular rotation constants were measured.  相似文献   

11.
High-quality Bi2Te3 microcrystals have been grown by physical vapor transport (PVT) method without using a foreign transport agent. The microcrystals grown under optimal temperature gradient are well facetted and they have dimensions up to ~100 μm. The phase composition of grown crystals has been identified by X-ray single crystal structure analysis in space group R3?m, a=4.3896(2) Å, b=30.5019(10) Å, Z=3 (R=0.0271). Raman microspectrometry has been used to describe the vibration parameters of Bi2Te3 microcrystals. The FWHM parameters obtained for representative Raman lines at 61 cm?1 and 101 cm?1 are as low as 3.5 cm?1 and 4.5 cm?1, respectively.  相似文献   

12.
The FTIR absorption spectrum of the hybrid AB type ν4 + ν8 combination band of trans-C2H2D2 centered at 1845.98737 cm?1 in the 1730–1940 cm?1 region was recorded at an unapodized resolution of 0.0063 cm?1. A total of 2725 a- and b-type transitions was assigned and fitted to upper state (ν4 + ν8 = 1) rovibrational constants up to sextic terms using Watson’s A-reduced Hamiltonian in Ir representation. The b-type feature of the band was analyzed for the first time. The root-mean-square deviation of the IR fit was 0.00059 cm?1. The most accurate set of ground state rovibrational constants up to sextic terms was also derived from the simultaneous fit of 3340 ground state combination differences from the present analysis and the ν4 band of trans-C2H2D2. The transition dipole moment ratio μaμb was found to be 1.95 ± 0.06.  相似文献   

13.
The Fourier transform infrared (FTIR) spectrum of the ν6 band of ethylene-cis-d2(cis-C2H2D2) was recorded with a unapodized resolution of 0.0063 cm?1 in the 990–1100 cm?1 region. A total of 609 transitions were assigned to this band centred at 1039.7682 ± 0.0003 cm?1. The ν6 band was found to be coupled to the ν4 band by a-type Coriolis resonance. Both perturbed and unperturbed transitions were assigned and fitted to give eight rovibrational constants with high accuracy for the v6 = 1 state with a standard deviation of 0.00097 cm?1 using a Watson’s A-reduced Hamiltonian in the Ir representation. From a rovibrational analysis of the Coriolis interaction between the ν6 band and non-infrared active ν4 band of cis-C2H2D2, the band centre of ν4 at 984.9 ± 0.2 cm?1 was derived. Furthermore, the second-order a-type Coriolis coupling constant between the two bands was obtained for the first time.  相似文献   

14.
The absorption spectrum of the 16O3 isotopologue of ozone was recorded in the 7000–7920 cm?1 region by using high sensitivity CW-Cavity Ring Down Spectroscopy (αmin  10?10 cm?1). This report is devoted to the analysis of the 7300–7600 cm?1 region dominated by four A-type bands: 6ν1 + ν3 centred around 7395 cm?1, 3ν1 + 5ν2 + ν3 and 2ν1 + 4ν2 + 3ν3 lying in the 7450 cm?1 region and 5ν1 + 2ν2 + ν3 centred around 7579 cm?1. 213 transitions of the 6ν1 + ν3 band were assigned and the corresponding line positions were modeled using an effective Hamiltonian including a Coriolis resonance interaction between the (601) upper state and a A-type dark state. The two very close 3ν1 + 5ν2 + ν3 and 2ν1 + 4ν2 + 3ν3 bands were analysed using a similar effective Hamiltonian scheme involving the anharmonic resonance coupling between the (351) and (243) states. For these two bands, 304 transitions were assigned. The modelling also includes a first Coriolis resonance interaction between the (351) bright state and the (530) dark state, and a second one between the (243) bright state and the (144) dark state. In the 7579 cm?1 region, 205 transitions of the 5ν1 + 2ν2 + ν3 band were assigned and modelled taking into account the Coriolis resonance interactions between the (521) upper state and the (700), (342) and (280) dark states.The dipole transition moment parameters of the four analysed bands were determined by a least-squares fit to the measured line intensities. For the studied band systems, the effective Hamiltonian and transition moment operator parameters were used to generate line lists provided as Supplementary Materials.  相似文献   

15.
The hot band 3ν9?ν9 of the isotopologue 11BF2OH (difluoroboric acid) located at 1034.78 cm?1 was investigated for the first time by Fourier transform infrared spectroscopy. During previous studies both, the ν9 mode (OH-torsion relative to the BF2 moiety, at 522.87 cm?1) and the ν4 mode (in-plane OH bend) had been shown to exert large amplitude motion, and splittings of 0.0051 and 0.0038 cm?1 had been observed in the interacting 2ν9 and ν4 bands located at 1042.87 and 961.49 cm?1, respectively. The present work establishes large amplitude effects also for the 93 excited state located at 1557.655 cm?1. Numerous P and R transitions of the 3ν9ν9 hot band were identified in the 2ν9 manifold, and doublets corresponding to a torsional splitting of 0.031 cm?1 in the 93 state were observed. The vibrational assignment of the 93 state was confirmed by the detection of the 3ν9?2ν9 hot band Q branch in the 19 μm region.  相似文献   

16.
The absorption spectrum of the 18O3 isotopologue of ozone was recorded by CW-Cavity Ring Down Spectroscopy in the 6950–7125 cm?1 region. The typical noise equivalent absorption of the recordings is αmin ≈1×10?10 cm?1. The spectrum is dominated by three very weak bands: 3ν1+5ν3 near 7009 cm?1 and the ν2+7ν3 and 4ν2+5ν3 interacting bands near 7100 cm?1. In total 260, 206 and 133 transitions were assigned for the 3ν1+5ν3, ν2+7ν3 and 4ν2+5ν3 bands, respectively. The line positions of the 3ν1+5ν3 band were modelled using an effective Hamiltonian (EH) model involving two dark states – (6 0 1) and (2 5 2) – in interaction with the (3 0 5) bright state. The EH model developed for the ν2+7ν3 and 4ν2+5ν3 bands involves only the (0 1 7) and (0 4 5) interacting bright states. Line positions could be reproduced with rms deviations on the order of 0.01 cm?1 and the dipole transition moment parameters were determined for the three observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a list of 984 transitions of the three bands which is provided as Supplementary Material.  相似文献   

17.
18.
C. Rohmann  J.B. Metson  H. Idriss 《Surface science》2011,605(17-18):1694-1703
The adsorption of CO on α-Al2O3(0001) was studied using the DFT-GGA computational method and on α-Al2O3 powder experimentally by Infra red spectroscopy. The core and valence level regions of α-Al2O3(0001) single crystal surface were also studied experimentally. Ar ions sputtering of the surface results in a slight but reproducible decrease in the XPS O2p lines in the valence band regions due to preferential removal of surface (and near surface) O atoms. Core level XPS O1s and Al2p further confirmed oxygen depletion with an associated surface stoichiometry close to Al2O2.9. The adsorption energy of CO was computed and found equal to 0.52 eV for θ = 0.25, it decreased to 0.42 eV at θ = 1. The IR frequency of νCO was also computed and in all cases it was blue shifted with respect to gas phase CO. The shift, Δν, decreased with increasing coverage where it was found equal to 56 cm? 1 for θ = 0.25 and decreased to 30 cm? 1 for θ = 1. Structural analyses indicated that the change in the adsorption energy and the associated frequency shift is due to surface relaxation upon adsorption. Experimentally the adsorption of CO gave rise to one main IR peak at 2154 cm? 1 at 0.3 Torr and above. Two far smaller peaks are also seen at lower pressures of 0.03–0.2 Torr at 2189 and 2178 cm? 1. The isosteric heat of adsorption was computed for the IR band at 2154 cm? 1 and was found equal to 0.2 eV which did not change with coverage in the investigated range up to θ = 0.6.  相似文献   

19.
This paper reports on the thermo (TL), iono (IL) and photoluminescence (PL) properties of nanocrystalline CaSiO3:Eu3+ (1–5 mol %) bombarded with 100 MeV Si7+ ions for the first time. The effect of different dopant concentrations and influence of ion fluence has been discussed. The characteristic emission peaks 5D07FJ (J=0, 1, 2, 3, 4) of Eu3+ ions was recorded in both PL (1×1011–1×1013 ions cm?2) and IL (4.16×1012–6.77×1012 ions cm?2) spectra. It is observed that PL intensity increases with ion fluence, whereas in IL the peaks intensity increases up to fluence 5.20×1012 ions cm?2, then it decreases. A well resolved TL glow peak at ~304 °C was recorded in all the ion bombarded samples at a warming rate of 5 °C s?1. The TL intensity is found to be maximum at 5 mol% Eu3+ concentration. Further, TL intensity increases sub linearly with shifting of glow peak towards lower temperature with ion fluence.  相似文献   

20.
Layered LiNi0.5Mn0.5 ? xAlxO2 (x = 0, 0.02, 0.05, 0.08, and 0.1) series cathode materials for lithium-ion batteries were synthesized by a combination technique of co-precipitation and solid-state reaction, and the structural, morphological, and electrochemical properties were examined by XRD, FT-IR, XPS, SEM, CV, EIS, and charge–discharge tests. It is proven that the aliovalent substitution of Al for Mn promoted the formation of LiNi0.5Mn0.5 ? xAlxO2 structures and induced an increase in the average oxidation number of Ni, thereby leading to the shrinkage of the lattice volume. Among the LiNi0.5Mn0.5 ? xAlxO2 materials, the material with x = 0.05 shows the best cyclability and rate ability, with discharge capacities of 219, 169, 155, and 129 mAh g? 1 at 10, 100, 200, and 400 mA g? 1 current density respectively. Cycled under 40 mA g? 1 in 2.8–4.6 V, LiNi0. 5Mn0.45Al0.05O2 shows the highest discharge capacity of about 199 mAh g? 1 for the first cycle, and 179 mAh g? 1 after 40 cycles, with a capacity retention of 90%. EIS analyses of the electrode materials at pristine state and state after first charge to 4.6 V indicate that the observed higher current rate capability of LiNi0. 5Mn0.45Al0.05O2 can be understood due to the better charge transfer kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号