首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 351 毫秒
1.
The preparations and spectroscopic characterisation of the hydrolytically unstable As(III) complexes, [AsF(3)(OPR(3))(2)] (R = Me or Ph) and [AsF(3){Me(2)P(O)CH(2)P(O)Me(2)}] are described and represent the first examples of complexes of AsF(3) with neutral ligands. The crystal structure of [AsF(3){Me(2)P(O)CH(2)P(O)Me(2)}] contains dimers with bridging diphosphine dioxide, but there are also long contacts between the dimers to neighbouring phosphine oxide groups, completing a very distorted six-coordination at arsenic and producing a weakly associated polymer structure. The reaction of AsF(3) with OAsPh(3) affords Ph(3)AsF(2), and no arsine oxide complex was formed. Reaction of SbF(3) with OER(3) (R = Me or Ph, E = P or As), Me(2)P(O)CH(2)P(O)Me(2) and Ph(2)P(O)(CH(2))(n)P(O)Ph(2) (n = 1 or 2) in MeOH produces [SbF(3)(OER(3))(2)], [SbF(3){Me(2)P(O)CH(2)P(O)Me(2)}] and [SbF(3){Ph(2)P(O)(CH(2))(n)P(O)Ph(2)}] respectively. The X-ray structures reveal that the complexes contain square pyramidal SbF(3)O(2) cores with apical F and cis disposed pnictogen oxides. However, whilst [SbF(3)(OER(3))(2)] (R = Ph: E = P or As; R = Me: E = As) and [SbF(3){Ph(2)P(O)CH(2)P(O)Ph(2)}] are monomeric, [SbF(3){Me(2)P(O)CH(2)P(O)Me(2)}] is a dimer with bridging diphosphine dioxides producing a twelve-membered ring, and [SbF(3){Ph(2)P(O)(CH(2))(2)P(O)Ph(2)}] is a chain polymer with diphosphine dioxide bridges. In the OAsR(3) reactions with SbF(3), R(3)AsF(2) are also formed. Notably the Sb-O(P) bonds are shorter than As-O(P), despite the covalent radii (As < Sb), consistent with very weak coordination of the AsF(3). IR and multinuclear ((1)H, (19)F and (31)P) NMR data are reported and discussed. BiF(3) does not react with pnictogen oxide ligands under similar conditions and halide exchange of bismuth chloro complexes with Me(3)SnF gave BiF(3).  相似文献   

2.
A series of palladium(II) complexes incorporating di-NHC-amine ligands has been prepared and their structural, dynamic and catalytic behaviour investigated. The complexes [trans-(kappa(2)-(tBu)CN(Bn)C(tBu))PdCl(2)] (12) and [trans-(kappa(2)-(Mes)CN(H)C(Mes))PdCl(2)] (13) do not exhibit interaction between the amine nitrogen and palladium atom respectively. NMR spectroscopy between -40 and 25 degrees C shows that the di-NHC-amine ligand is flexible expressing C(s) symmetry and for 13 rotation of the mesityl groups is prevented. In the related C(1) complex [(kappa(3)-(tBu)CN(H)C(tBu))PdCl][Cl] (14) coordination of NHC moieties and amine nitrogen atom is observed between -40 and 25 degrees C. Reaction between 12-14 and two equivalents of AgBF(4) in acetonitrile gives the analogous complexes [trans-(kappa(2)-(tBu)CN(Bn)C(tBu))Pd(MeCN)(2)][BF(4)](2) (15), [trans-(kappa(2)-(Mes)CN(H)C(Mes))Pd(MeCN)(2)][BF(4)](2) (16) and [(kappa(3)-(tBu)CN(H)C(tBu))Pd(MeCN)][BF(4)](2) (17) indicating that ligand structure determines amine coordination. The single crystal X-ray structures of 12, 17 and two ligand imidazolium salt precursors (tBu)C(H)N(Bn)C(H)(tBu)][Cl](2) (2) and [(tBu)C(H)N(H)C(H)(tBu)][BPh(4)](2) (4) have been determined. Complexes 12-14 and 15-17 have been shown to be active precatalysts for Heck and hydroamination reactions respectively.  相似文献   

3.
The reaction of tBu(C(6)H(4)O(2))P, with the borane B(C(6)F(5))(3) gives rise to NMR data consistent with the formation of the classical Lewis acid-base adduct tBu(C(6)H(4)O(2))P(B(C(6)F(5))(3)) (1). In contrast, the NMR data for the corresponding reactions of tBu(C(20)H(12)O(2))P and Cl(C(20)H(12)O(2))P with B(C(6)F(5))(3) were consistent with the presence of equilibria between free phosphine and borane and the corresponding adducts. Nonetheless, in each case, the adducts tBu(C(20)H(12)O(2))P(B(C(6)F(5))(3)) (2) and Cl(C(20)H(12)O(2))P(B(C(6)F(5))(3)) (3) were isolable. The species 1 reacts with PhCCH to give the new species tBu(C(6)H(4)O(2))P(Ph)C=CHB(C(6)F(5))(3) (4) in near quantitative yield. In an analogous fashion, the addition of PhCCH to solutions of the phosphines tBu(C(20)H(12)O(2))P, tBuPCl(2) and (C(6)H(3)(2,4-tBu(2))O)(3)P each with an equivalent of B(C(6)F(5))(3) gave rise to L(Ph)C=CHB(C(6)F(5))(3) (L = tBu(C(20)H(12)O(2))P 5, tBuPCl(2)6 and (C(6)H(3)(2,4-tBu(2))O)(3)P 7). X-Ray data for 1, 2, 6 and 7 are presented. The implications of these findings are considered.  相似文献   

4.
The first examples of ring-closing metathesis (RCM) reactions of a series of terminal alkene-derived cyclic phosphazenes have been carried out. The tetrakis-, hexakis-, and octakis(allyloxy)cyclophosphazenes (NPPh(2))(NP(OCH(2)CH=CH(2))(2))(2) (1), N(3)P(3)(OCH(2)CH=CH(2))(6) (2), and N(4)P(4)(OCH(2)CH=CH(2))(8) (3) and the tetrakis(allyloxy)-S-phenylthionylphosphazene (NS(O)Ph)[NP(OCH(2)CH=CH(2))(2)](2) (4) were prepared by the reactions of CH(2)=CHCH(2)ONa with the cyclophosphazenes (NPPh(2))(NPCl(2))(2), N(3)P(3)Cl(6), and N(4)P(4)Cl(8) and the S-phenylthionylphosphazene (NS(O)Ph)(NPCl(2))(2). The reactions of 1-4 with Grubbs first-generation olefin metathesis catalyst Cl(2)Ru=CHPh(PCy(3))(2) resulted in the selective formation of seven-membered di-, tri-, and tetraspirocyclic phosphazene compounds (NPPh(2))[NP(OCH(2)CH=CHCH(2)O)](2) (5), N(3)P(3)(OCH(2)CH=CHCH(2)O)(3) (6), and N(4)P(4)(OCH(2)CH=CHCH(2)O)(4) (7) and the dispirocyclic S-phenylthionylphosphazene compound (NS(O)Ph)[NP(OCH(2)CH=CHCH(2)O)](2) (8). X-ray structural studies of 5-8 indicated that the double bond of the spiro-substituted cycloalkene units is in the cis orientation in these compounds. In contrast to the reactions of 1-4, RCM reactions of the homoallyloxy-derived cyclophosphazene and thionylphosphazene (NPPh(2))[NP(OCH(2)CH(2)CH=CH(2))(2)](2) (9) and (NS(O)Ph)[NP(OCH(2)CH(2)CH=CH(2))(2)](2) (10) with the same catalyst resulted in the formation of 11-membered diansa compounds NPPh(2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)](2) (11) and (NS(O)Ph)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)](2) (13) and the intermolecular doubly bridged ansa-dibino-ansa compounds 12 and 14. The X-ray structural studies of compounds 11 and 13 indicated that the double bonds of the ansa-substituted cycloalkene units are in the trans orientation in these compounds. The geminal bis(homoallyloxy)tetraphenylcyclotriphosphazene [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CH(2))(2)] (15) upon RCM with Grubbs first- and second-generation catalysts gave the spirocyclic product [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)] (16) along with the geminal dibino-substituted dimeric compound [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)(2)PN][NPPh(2)](2) (17) as the major product. The dibino compound 17, upon reaction with the Grubbs second-generation catalyst, was found to undergo a unique ring-opening metathesis reaction, opening up the bino bridges and partially converting to the spirocyclic compound 16.  相似文献   

5.
Lanthanum oxide cluster anions are prepared by laser ablation and reacted with n-C(4)H(10) in a fast flow reactor. A time-of-flight mass spectrometer is used to detect the cluster distribution before and after the reactions. (La(2)O(3))(m=1-3)OH(-) and La(3)O(7)H(-) are observed as products, which suggests the occurrence of hydrogen atom abstraction reactions: (La(2)O(3))(m=1-3)O(-) + n-C(4)H(10) → (La(2)O(3))(m=1-3)OH(-) + C(4)H(9) and La(3)O(7)(-) + n-C(4)H(10) → La(3)O(7)H(-) + C(4)H(9). Density functional theory (DFT) calculations are performed to study the structures and bonding properties of La(2)O(4)(-), La(3)O(7)(-), and La(4)O(7)(-) clusters. The calculated results show that each of La(2)O(4)(-) and La(4)O(7)(-) contains one oxygen-centered radical (O(-?)) which is responsible for the high reactivity toward n-C(4)H(10). La(3)O(7)(-) contains one oxygen-centered radical (O(-?)) and one superoxide unit (O(2)(-?)), and the O(-?) is responsible for its high reactivity toward n-C(4)H(10). The O(-?) and O(2)(-?) can be considered to be generated by the adsorption of an O(2) molecule onto the singlet La(3)O(5)(-) with electron transfer from a terminally bonded oxygen ion (O(2-)) to the O(2). This may help us understand the mechanism of the formation of O(-?) and O(2)(-?) radicals in lanthanum oxide systems. The reaction mechanisms of La(2)O(4)(-) + n-C(4)H(10) and La(3)O(7)(-) + n-C(4)H(10) are also studied by the DFT calculations, and the calculated results are in good agreement with the experimental observations.  相似文献   

6.
BiPd(2)O(4) and PbPd(2)O(4) were synthesized at high pressure of 6 GPa and 1500 K. Crystal structures of BiPd(2)O(4) and PbPd(2)O(4) were studied with synchrotron X-ray powder diffraction. BiPd(2)O(4) is isostructural with PbPt(2)O(4) and crystallizes in a triclinic system (space group P1, a = 5.73632(4) ?, b = 6.02532(5) ?, c = 6.41100(5) ?, α = 114.371(1)°, β = 95.910(1)°, and γ = 111.540(1)° at 293 K). PbPd(2)O(4) is isostructural with LaPd(2)O(4) and BaAu(2)O(4) and crystallizes in a tetragonal system (space group I4(1)/a, a = 5.76232(1) ?, and c = 9.98347(2) ? at 293 K). BiPd(2)O(4) shows ordering of Pd(2+) and Pd(4+) ions, and it is the third example of compounds with ordered arrangements of Pd(2+) and Pd(4+) in addition to Ba(2)Hg(3)Pd(7)O(14) and KPd(2)O(3). In PbPd(2)O(4), the following charge distribution is realized Pb(4+)Pd(2+)(2)O(4). PbPd(2)O(4) shows a structural phase transition from I4(1)/a to I2/a at about 240 K keeping basically the same structural arrangements (space group I2/a, a = 5.77326(1) ?, b = 9.95633(2) ?, c = 5.73264(1) ?, β = 90.2185(2)° at 112 K). BiPd(2)O(4) is nonmagnetic while PbPd(2)O(4) exhibits a significant temperature-dependent paramagnetic moment of 0.46μ(B)/f.u. between 2 and 350 K. PbPd(2)O(4) shows metallic conductivity, and BiPd(2)O(4) is a semiconductor between 2 and 400 K.  相似文献   

7.
The hydrothermal reactions of a Cu(II) starting material, a molybdate source, 2,2'-bipyridine or terpyridine, and the appropriate alkyldiphosphonate ligand yield two series of bimetallic organophosphonate hybrid materials of the general types [Cu(n)(bpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)] and [Cu(n)(terpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)]. The bipyridyl series includes the one-dimensional materials [Cu(bpy)(MoO(2))(H(2)O)(O(3)PCH(2)PO(3))] (1) and [[Cu(bpy)(2)][Cu(bpy)(H(2)O)](Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)CH(2)PO(3))].H(2)O (5.H(2)O) and the two-dimensional hybrids [Cu(bpy)(Mo(2)O(5))(H(2)O)(O(3)PCH(2)PO(3))].H(2)O (2.H(2)O), [[Cu(bpy)](2)(Mo(4)O(12))(H(2)O)(2)(O(3)PCH(2)CH(2)PO(3))].2H(2)O (3.2H(2)O), and [Cu(bpy)(Mo(2)O(5))(O(3)PCH(2)CH(2)CH(2)PO(3))](4). The terpyridyl series is represented by the one-dimensional [[Cu(terpy)(H(2)O)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)PO(3))].3H(2)O (7.3H(2)O) and the two-dimensional composite materials [Cu(terpy)(Mo(2)O(5))(O(3)PCH(2)PO(3))] (6) and [[Cu(terpy)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)PO(3))] (8). The structures exhibit a variety of molybdate building blocks including isolated [MoO(6)] octahedra in 1, binuclear subunits in 2, 4, and 6, tetranuclear embedded clusters in 3, and the prototypical [Mo(5)O(15)(O(3)PR)(2)](4-) cluster type in 5, 7, and 8. These latter materials exemplify the building block approach to the preparation of extended structures.  相似文献   

8.
A new series of group 5 metal amides have been prepared from the reaction between V(NMe(2))(4) or M(NMe(2))(5) (M = Nb, Ta) and chiral ligands, (R)-2,2'-bis(mesitoylamino)-1,1'-binaphthyl (1H(2)), (R)-5,5',6,6',7,7',8,8'-octahydro-2,2'-bis(mesitoylamino)-1,1'-binaphthyl (2H(2)), (R)-6,6'-dimethyl-2,2'-bis(mesitoylamino)-1,1'-biphenyl (3H(2)), (R)-2,2'-bis(mesitylenesulfonylamino)-6,6'-dimethyl-1,1'-biphenyl (4H(2)), (R)-2,2'-bis(diphenylthiophosphoramino)-1,1'-binaphthyl (5H(2)), (R)-2,2'-bis[(3-tert-butyl-2-hydroxybenzylidene)amino]-6,6'-dimethyl-1,1'-biphenyl (6H(2)), (R)-2,2'-bis[(3,5-di-tert-butyl-2-hydroxybenzylidene)amino]-6,6'-dimethyl-1,1'-biphenyl (7H(2)), (R)-2,2'-bis[(3-tert-butyl-2-hydroxybenzylidene)amino]-1,1'-binaphthyl (8H(2)), (S)-2-(mesitoylamino)-2'-(dimethylamino)-1,1'-binaphthyl (9H), and (R)-2-(mesitoylamino)-2'-(dimethylamino)-6,6'-dimethyl-1,1'-biphenyl (10H), which are derived from (R) or (S)-2,2'-diamino-1,1'-binaphthyl, and (R)-2,2'-diamino-6,6'-dimethyl-1,1'-biphenyl, respectively. Treatment of V(NMe(2))(4) or M(NMe(2))(5) (M = Nb, Ta) with 1 equiv of C(2)-symmetric amidate ligands 1H(2), 2H(2), 3H(2), 4H(2), and 5H(2), or Schiff base ligands 6H(2), 7H(2) and 8H(2) at room temperature gives, after recrystallization from a benzene, toluene or n-hexane solution, the vanadium amides (1)V(NMe(2))(2) (11), (2)V(NMe(2))(2) (14), (3)V(NMe(2))(2) (17), (5)V(NMe(2))(2) (22), (6)V(NMe(2))(2) (23) and (7)V(NMe(2))(2) (24), and niobium amides (1)Nb(NMe(2))(3) (12), (2)Nb(NMe(2))(3) (15), (3)Nb(NMe(2))(3) (18), (4)Nb(NMe(2))(3) (20) and [2-(3-Me(3)C-2-O-C(6)H(3)CHN)-2'-(N)-C(20)H(12)][2-(Me(2)N)(2)CH-6-CMe(3)-C(6)H(3)O]NbNMe(2)·C(7)H(8) (25·C(7)H(8)), and tantalum amides (1)Ta(NMe(2))(3) (13), (2)Ta(NMe(2))(3) (16), (3)Ta(NMe(2))(3) (19) and (4)Ta(NMe(2))(3) (21) respectively, in good yields. Reaction of V(NMe(2))(4) or M(NMe(2))(5) (M = Nb, Ta) with 2 equiv of C(1)-symmetric amidate ligands 9H or 10H at room temperature gives, after recrystallization from a toluene or n-hexane solution, the chiral bis-ligated vanadium amides (9)(2)V(NMe(2))(2)·3C(7)H(8) (27·3C(7)H(8)) and (10)V(NMe(2))(2) (28), and chiral bis-ligated metallaaziridine complexes (10)(2)M(NMe(2))(η(2)-CH(2)NMe) (M = Nb (29), Ta (30)) respectively, in good yields. The niobium and tantalum amidate complexes are stable in a toluene solution at or below 160 °C, while the vanadium amidate complexes degrade via diemthylamino group elimination at this temperature. For example, heating the complex (2)V(NMe(2))(2) (14) in toluene at 160 °C for four days leads to the isolation of the complex [(2)V](2)(μ-NMe(2))(2) (26) in 58% yield. These new complexes have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of complexes 12, 13, and 15-30 have further been confirmed by X-ray diffraction analyses. The vanadium amides are active chiral catalysts for the asymmetric hydroamination/cyclization of aminoalkenes, affording cyclic amines in moderate to good yields with good ee values (up to 80%), and the tantalum amides are outstanding chiral catalysts for the hydroaminoalkylation, giving chiral secondary amines in good yields with excellent ee values (up to 93%).  相似文献   

9.
Gold(I), silver(I), and copper(I) phosphine complexes of 6,9,12,15,18-pentaaryl[60]fullerides 1a and 1b, namely, [(4-MeC(6)H(4))(5)C(60)]Au(PPh(3)) (2a), [(4-t-BuC(6)H(4))(5)C(60)]Au(PPh(3)) (2b), [(4-MeC(6)H(4))(5)C(60)]Ag(PCy(3)) (3a), [(4-t-BuC(6)H(4))(5)C(60)]Ag(PPh(3)) (3b), [(4-t-BuC(6)H(4))(5)C(60)]Ag(PCy(3)) (3c), [(4-MeC(6)H(4))(5)C(60)]Cu(PPh(3)) (4a), and [(4-t-BuC(6)H(4))(5)C(60)]Cu(PPh(3)) (4b), have been synthesized and characterized spectroscopically. All complexes except for 3c were also characterized by single-crystal X-ray diffraction. Several coordination modes between the cyclopentadienyl ring embedded in the fullerene and the metal centers are observed, ranging from η(1) with a slight distortion toward η(3) in the case of gold(I), to η(2)/η(3) for silver(I), and η(5) for copper(I). Silver complexes 3a and 3b are rare examples of crystallographically characterized Ag(I) cyclopentadienyls whose preparation was possible thanks to the steric shielding provided by fullerides 1a and 1b, which stabilizes these complexes. Silver complexes 3a and 3b both display unexpected coordination of the cyclopentadienyl portion of the fulleride anion with Ag(I). DFT calculations on the model systems (H(5)C(60))M(PH(3)) and CpMPH(3) (M = Au, Ag, or Cu) were carried out to probe the geometries and electronic structures of these metal complexes.  相似文献   

10.
Four novel multifunctional polyoxometalate (POM)-based inorganic-organic hybrid compounds, [α(2)-P(2)W(17)O(61){(RGe)}](7-) (Ge-1, R(1) = HOOC(CH(2))(2(-)) and Ge-2, R(2) = H(2)C═CHCH(2(-))) and [α(2)-P(2)W(17)O(61){(RSi)(2)O}](6-) (Si-1, R(1) and Si-2, R(2)), were prepared by incorporating organic chains having terminal functional groups (carboxylic acid and allyl groups) into monolacunary site of Dawson polyoxoanion [α(2)-P(2)W(17)O(61)](10-). In these POMs, new modification of the terminal functional groups was attained by introducing organogermyl and organosilyl groups. Dimethylammonium salts of the organogermyl complexes, (Me(2)NH(2))(7)[α(2)-P(2)W(17)O(61)(R(1)Ge)]·H(2)O MeN-Ge-1 and (Me(2)NH(2))(7)[α(2)-P(2)W(17)O(61)(R(2)Ge)]·4H(2)O MeN-Ge-2, were obtained as analytically pure crystals, in 22.8% and 55.3% yields, respectively, by stoichiometric reactions of [α(2)-P(2)W(17)O(61)](10-) with separately prepared Cl(3)GeC(2)H(4)COOH in water, and H(2)C═CHCH(2)GeCl(3) in a solvent mixture of water/acetonitrile. Synthesis and X-ray structure analysis of the Dawson POM-based organogermyl complexes were first successful. Dimethylammonium salts of the corresponding organosilyl complexes, (Me(2)NH(2))(6)[α(2)-P(2)W(17)O(61){(R(1)Si)(2)O}]·4H(2)O MeN-Si-1 and (Me(2)NH(2))(6)[α(2)-P(2)W(17)O(61){(R(2)Si)(2)O}]·6H(2)O MeN-Si-2, were also obtained as analytically pure crystalline crystals, in 17.1% and 63.5% yields, respectively, by stoichiometric reactions of [α(2)-P(2)W(17)O(61)](10-) with NaOOC(CH(2))(2)Si(OH)(2)(ONa) and H(2)C═CHCH(2)Si(OEt)(3). These complexes were characterized by elemental analysis, thermogravimetric and differential thermal analyses (TG/DTA), FTIR, solid-state ((31)P) and solution ((31)P, (1)H, and (13)C) NMR, and X-ray crystallography.  相似文献   

11.
We generated a series of new polymer-bound peroxo complexes of vanadium(V) and molybdenum(VI) of the type [VO(O(2))(2)(sulfonate)]-PSS [PSS = poly(sodium 4-styrene sulfonate)] (PV(3)), [V(2)O(2)(O(2))(4)(carboxylate)VO(O(2))(2)(sulfonate)]-PSSM [PSSM = poly(sodium styrene sulfonate-co-maleate)] (PV(4)), [Mo(2)O(2)(O(2))(4)(carboxylate)]-PA [PA = poly(sodium acrylate)] (PMo(1)), [MoO(O(2))(2)(carboxylate)]-PMA [PMA = poly(sodium methacrylate)] (PMo(2)), and [MoO(O(2))(2)(amide)]-PAm [PAm = poly(acrylamide)] (PMo(3)) by reacting V(2)O(5) (for PV(3) and PV(4)) or H(2)MoO(4) (for PMo(1), PMo(2), and PMo(3)) with H(2)O(2) and the respective water-soluble macromolecular ligand at pH 5-6. The compounds were characterized by elemental analysis (CHN and energy-dispersive X-ray spectroscopy), spectral studies (UV-vis, IR, (13)C NMR, (51)V NMR, and (95) Mo NMR), thermal (TGA) as well as scanning electron micrographs (SEM), and EDX analysis. It has been demonstrated that compounds retain their structural integrity in solutions of a wide range of pH values and are approximately 100 times weaker as substrate to the enzyme catalase relative to H(2)O(2), its natural substrate. The effect of the title compounds, along with previously reported compounds [V(2)O(2)(O(2))(4)(carboxylate)]-PA (PV(1)) and [VO(O(2))(2)(carboxylate)]-PMA (PV(2)) on rabbit intestine alkaline phosphatase (ALP) has been investigated and compared with the effect induced by the free diperoxometallates viz. Na[VO(O(2))(2)(H(2)O)] (DPV), [MoO(O(2))(2)(glycine)(H(2)O)] (DMo(1)), and [MoO(O(2))(2)(asparagine)(H(2)O)] (DMo(2)). It has been observed that although all the compounds tested are potent inhibitors of the enzyme, the polymer-bound and neat complexes act via distinct mechanisms. Each of the macromolecular compounds is a classical noncompetitive inhibitor of ALP. In contrast, the action of neat pV and heteroligand pMo compounds on the enzyme function is consistent with a mixed type of inhibition.  相似文献   

12.
The double-decker sandwich complex CpIr(2,3-Et(2)C(2)B(4)H(4)) (1a) was prepared via deprotonation of nido-2,3-Et(2)C(2)B(4)H(6) to its mono- or dianion and reaction with (CpIrCl(2))(2) in THF and isolated as a colorless air-stable solid; the B(4)-chloro derivative 1b was also obtained. Decapitation of 1a and 1b with TMEDA afforded colorless nido-CpIr(2,3-Et(2)C(2)B(3)H(5)) (2a) and its 4-chloro derivative 2b. Chlorination of 1a by Cl(2) or N-chlorosuccinimide gave the symmetrical species CpIr(2,3-Et(2)C(2)B(4)H(3)-5-Cl) (1c), which was decapped to yield nido-CpIr(2,3-Et(2)C(2)B(3)H(4)-5-Cl) (2c). The triple-decker complexes CpIr(2,3-Et(2)C(2)B(3)H(2)-4[6]-Cl)IrCp (3), an orange solid, and dark green CpIr(2,3-Et(2)C(2)B(3)H(2)-4[6]-Cl)CoCp (5) were prepared from 2a and nido-CpCo(2,3-Et(2)C(2)B(3)H(5)) (4a), respectively, by deprotonation and reaction with (CpIrCl(2))(2) in THF. Reaction of the 2c(-) anion with Rh(MeCN)(3)Cl(3) gave the dark green tetradecker complex [CpIr(Et(2)C(2)B(3)H(2)-5-Cl)](2)RhH (6). In an attempt to prepare a heterotrimetallic Co-Rh-Ir tetradecker sandwich, a three-way reaction involving the deprotonated anions derived from CpCo(2,3-Et(2)C(2)B(3)H(4)-5-Cl) (4b) and 2c with Rh(MeCN)(3)Cl(3) was conducted. The desired species CpCo(Et(2)C(2)B(3)H(2)Cl)RhH(Et(2)C(2)B(3)H(2)Cl)IrCp (7) and the tetradeckers [CpCo(Et(2)C(2)B(3)H(2)Cl)](2)RhH (8) and 6 were isolated in small quantities from the product mixture; many other apparent triple-decker and tetradecker products were detected via mass spectroscopy but were not characterized. All new compounds were isolated via column or plate chromatography and characterized via NMR, UV-visible, and mass spectroscopy and by X-ray crystal structure determinations of 1a and 3. Crystal data for 1a: space group C2/c; a = 28.890(5) ?, b = 8.511(2) ?, c = 15.698(4) ?, beta = 107.61(2) degrees; Z = 8; R = 0.049 for 1404 independent reflections having I > 3sigma(I). Crystal data for 3: space group P2(1)/c; a = 11.775(4) ?, b = 15.546(5) ?, c = 15.500(5) ?, beta = 103.16(3) degrees; Z = 4; R = 0.066 for 2635 independent reflections having I > 3sigma(I).  相似文献   

13.
The carbaalane halogen derivatives [(AlX)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (X = F (9), Cl (7), Br (10), I (11)) were prepared in toluene from [(AlH)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (6) and BF(3).OEt(2), BX(3) (X = Br, I), Me(3)SnF, and Me(3)SiX (X = Cl, Br, I), respectively. A partially halogenated product [(AlH)(2)(AlX)(4)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (12) (X = Cl (approximately 40%), Br (approximately 60%)) was obtained from 5 and impure BBr(3). [(AlH)(6)(AlNMe(3))(2)(CCH(2)Ph)(6)] (5) was converted to [(AlX)(6)(AlNMe(3))(2)(CCH(2)Ph)(6)] (X = F (13), Cl (14), Br (15), I (16)) using BF(3).OEt(2) and Me(3)SiX (X = Cl, Br, I), respectively. The X-ray single-crystal structures of 11.C(6)H(6), 12.3C(7)H(8), 13.6C(7)H(8), and 15.4C(7)H(8) were determined. Compounds 7 and 9-11 are soluble in benzene/toluene and could be well characterized by NMR spectroscopy and MS (EI) spectrometry. The results demonstrate the facile substitution of the hydridic hydrogen atoms in 5 and 6 by the halides with different reagents.  相似文献   

14.
The synthesis and characterization of several sterically encumbered monoterphenyl derivatives of aluminum halides and aluminum hydrides are described. These compounds are [2,6-Mes(2)C(6)H(3)AlH(3)LiOEt(2)](n)() (1), (Mes = 2,4,6-Me(3)C(6)H(2)-), 2,6-Mes(2)C(6)H(3)AlH(2)OEt(2) (2), [2,6-Mes(2)C(6)H(3)AlH(2)](2) (3), 2,6-Mes(2)C(6)H(3)AlCl(2)OEt(2) (4), [2,6-Mes(2)C(6)H(3)AlCl(3)LiOEt(2)](n)() (5), [2,6-Mes(2)C(6)H(3)AlCl(2)](2) (6), TriphAlBr(2)OEt(2) (7), (Triph = 2,4,6-Ph(3)C(6)H(2)-), [2,6-Trip(2)C(6)H(3)AlH(3)LiOEt(2)](2) (8) (Trip = 2,4,6-i-Pr(3)C(6)H(2)-), 2,6-Trip(2)C(6)H(3)AlH(2)OEt(2) (9), [2,6-Trip(2)C(6)H(3)AlH(2)](2) (10), 2,6-Trip(2)C(6)H(3)AlCl(2)OEt(2) (11), and the partially hydrolyzed derivative [2,6-Trip(2)C(6)H(3)Al(Cl)(0.68)(H)(0.32)(&mgr;-OH)](2).2C(6)H(6) (12). The structures of 2, 3a, 4, 6, 7, 9a, 10a, 10b, 11, and 12 were determined by X-ray crystallography. The structures of 3a, 9a, 10a, and 10b, are related to 3, 9, and 10, respectively, by partial occupation of chloride or hydride by hydroxide. The compounds were also characterized by (1)H, (13)C, (7)Li, and (27)Al NMR and IR spectroscopy. The major conclusions from the experimental data are that a single ortho terphenyl substituent of the kind reported here are not as effective as the ligand Mes (Mes = 2,4,6-t-Bu(3)C(6)H(2)-) in preventing further coordination and/or aggregation involving the aluminum centers. In effect, one terphenyl ligand is not as successful as a Mes substituent in masking the metal through agostic and/or steric effects.  相似文献   

15.
Two novel heterobimetallic complexes of formula [Cr(bpy)(ox)(2)Co(Me(2)phen)(H(2)O)(2)][Cr(bpy)(ox)(2)]·4H(2)O (1) and [Cr(phen)(ox)(2)Mn(phen)(H(2)O)(2)][Cr(phen)(ox)(2)]·H(2)O (2) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and Me(2)phen = 2,9-dimethyl-1,10-phenanthroline) have been obtained through the "complex-as-ligand/complex-as-metal" strategy by using Ph(4)P[CrL(ox)(2)]·H(2)O (L = bpy and phen) and [ML'(H(2)O)(4)](NO(3))(2) (M = Co and Mn; L' = phen and Me(2)phen) as precursors. The X-ray crystal structures of 1 and 2 consist of bis(oxalato)chromate(III) mononuclear anions, [Cr(III)L(ox)(2)](-), and oxalato-bridged chromium(III)-cobalt(II) and chromium(III)-manganese(II) dinuclear cations, [Cr(III)L(ox)(μ-ox)M(II)L'(H(2)O)(2)](+)[M = Co, L = bpy, and L' = Me(2)phen (1); M = Mn and L = L' = phen (2)]. These oxalato-bridged Cr(III)M(II) dinuclear cationic entities of 1 and 2 result from the coordination of a [Cr(III)L(ox)(2)](-) unit through one of its two oxalato groups toward a [M(II)L'(H(2)O)(2)](2+) moiety with either a trans- (M = Co) or a cis-diaqua (M = Mn) configuration. The two distinct Cr(III) ions in 1 and 2 adopt a similar trigonally compressed octahedral geometry, while the high-spin M(II) ions exhibit an axially (M = Co) or trigonally compressed (M = Mn) octahedral geometry in 1 and 2, respectively. Variable temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 and 2 reveal the presence of weak intramolecular ferromagnetic interactions between the Cr(III) (S(Cr) = 3/2) ion and the high-spin Co(II) (S(Co) = 3/2) or Mn(II) (S(Mn) = 5/2) ions across the oxalato bridge within the Cr(III)M(II) dinuclear cationic entities (M = Co and Mn) [J = +2.2 (1) and +1.2 cm(-1) (2); H = -JS(Cr)·S(M)]. Density functional electronic structure calculations for 1 and 2 support the occurrence of S = 3 Cr(III)Co(II) and S = 4 Cr(III)Mn(II) ground spin states, respectively. A simple molecular orbital analysis of the electron exchange mechanism suggests a subtle competition between individual ferro- and antiferromagnetic contributions through the σ- and/or π-type pathways of the oxalato bridge, mainly involving the d(yz)(Cr)/d(xy)(M), d(xz)(Cr)/d(xy)(M), d(x(2)-y(2))(Cr)/d(xy)(M), d(yz)(Cr)/d(xz)(M), and d(xz)(Cr)/d(yz)(M) pairs of orthogonal magnetic orbitals and the d(x(2)-y(2))(Cr)/d(x(2)-y(2))(M), d(xz)(Cr)/d(xz)(M), and d(yz)(Cr)/d(yz)(M) pairs of nonorthogonal magnetic orbitals, which would be ultimately responsible for the relative magnitude of the overall ferromagnetic coupling in 1 and 2.  相似文献   

16.
The synthesis and characterization of a series of mononuclear d(8) complexes with at least two P-coordinated alkynylphosphine ligands and their reactivity toward cis-[Pt(C(6)F(5))(2)(THF)(2)] are reported. The cationic [Pt(C(6)F(5))(PPh(2)C triple-bond CPh)(3)](CF(3)SO(3)), 1, [M(COD)(PPh(2)C triple-bond CPh)(2)](ClO(4)) (M = Rh, 2, and Ir, 3), and neutral [Pt(o-C(6)H(4)E(2))(PPh(2)C triple-bond CPh)(2)] (E = O, 6, and S, 7) complexes have been prepared, and the crystal structures of 1, 2, and 7.CH(3)COCH(3) have been determined by X-ray crystallography. The course of the reactions of the mononuclear complexes 1-3, 6, and 7 with cis-[Pt(C(6)F(5))(2)(THF)(2)] is strongly influenced by the metal and the ligands. Thus, treatment of 1 with 1 equiv of cis-[Pt(C(6)F(5))(2)(THF)(2)] gives the double inserted cationic product [Pt(C(6)F(5))(S)mu-(C(Ph)=C(PPh(2))C(PPh(2))=C(Ph)(C(6)F(5)))Pt(C(6)F(5))(PPh(2)C triple-bond CPh)](CF(3)SO(3)) (S = THF, H(2)O), 8 (S = H(2)O, X-ray), which evolves in solution to the mononuclear complex [(C(6)F(5))(PPh(2)C triple-bond CPh)Pt(C(10)H(4)-1-C(6)F(5)-4-Ph-2,3-kappaPP'(PPh(2))(2))](CF(3) SO(3)), 9 (X-ray), containing a 1-pentafluorophenyl-2,3-bis(diphenylphosphine)-4-phenylnaphthalene ligand, formed by annulation of a phenyl group and loss of the Pt(C(6)F(5)) unit. However, analogous reactions using 2 or 3 as precursors afford mixtures of complexes, from which we have characterized by X-ray crystallography the alkynylphosphine oxide compound [(C(6)F(5))(2)Pt(mu-kappaO:eta(2)-PPh(2)(O)C triple-bond CPh)](2), 10, in the reaction with the iridium complex (3). Complexes 6 and 7, which contain additional potential bridging donor atoms (O, S), react with cis-[Pt(C(6)F(5))(2)(THF)(2)] in the appropriate molar ratio (1:1 or 1:2) to give homo- bi- or trinuclear [Pt(PPh(2)C triple-bond CPh)(mu-kappaE-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)Pt(C(6)F(5))(2)] (E = O, 11, and S, 12) and [(Pt(mu(3)-kappa(2)EE'-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)(2))(Pt(C(6)F(5))(2))(2)] (E = O, 13, and S, 14) complexes. The molecular structure of 14 has been confirmed by X-ray diffraction, and the cyclic voltammetric behavior of precursor complexes 6 and 7 and polymetallic derivatives 11-14 has been examined.  相似文献   

17.
Divalent manganese, cobalt, nickel, and zinc complexes of 6-Ph(2)TPA (N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-Ph(2)TPA)Mn(CH(3)OH)(3)](ClO(4))(2) (1), [(6-Ph(2)TPA)Co(CH(3)CN)](ClO(4))(2) (2), [(6-Ph(2)TPA)Ni(CH(3)CN)(CH(3)OH)](ClO(4))(2) (3), [(6-Ph(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (4)) and 6-(Me(2)Ph)(2)TPA (N,N-bis((6-(3,5-dimethyl)phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-(Me(2)Ph)(2)TPA)Ni(CH(3)CN)(2)](ClO(4))(2) (5) and [(6-(Me(2)Ph)(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (6)) have been prepared and characterized. X-ray crystallographic characterization of 1A.CH(3)()OH and 1B.2CH(3)()OH (differing solvates of 1), 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN revealed mononuclear cations with one to three coordinated solvent molecules. In 1A.CH(3)()OH and 1B.2CH(3)()OH, one phenyl-substituted pyridyl arm is not coordinated and forms a secondary hydrogen-bonding interaction with a manganese bound methanol molecule. In 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN, all pyridyl donors of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands are coordinated to the divalent metal center. In the cobalt, nickel, and zinc derivatives, CH/pi interactions are found between a bound acetonitrile molecule and the aryl appendages of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands. (1)H NMR spectra of 4 and 6 in CD(3)NO(2) solution indicate the presence of CH/pi interactions, as an upfield-shifted methyl resonance for a bound acetonitrile molecule is present. Examination of the cyclic voltammetry of 1-3 and 5 revealed no oxidative (M(II)/M(III)) couples. Admixture of equimolar amounts of 6-Ph(2)TPA, M(ClO(4))(2).6H(2)O, and Me(4)NOH.5H(2)O, followed by the addition of an equimolar amount of acetohydroxamic acid, yielded the acetohydroxamate complexes [((6-Ph(2)TPA)Mn)(2)(micro-ONHC(O)CH(3))(2)](ClO(4))(2) (8), [(6-Ph(2)TPA)Co(ONHC(O)CH(3))](ClO(4))(2) (9), [(6-Ph(2)TPA)Ni(ONHC(O)CH(3))](ClO(4))(2) (10), and [(6-Ph(2)TPA)Zn(ONHC(O)CH(3))](ClO(4))(2) (11), all of which were characterized by X-ray crystallography. The Mn(II) complex 8.0.75CH(3)()CN.0.75Et(2)()O exhibits a dinuclear structure with bridging hydroxamate ligands, whereas the Co(II), Ni(II), and Zn(II) derivatives all exhibit mononuclear six-coordinate structures with a chelating hydroxamate ligand.  相似文献   

18.
The synthesis and characterization of the dioxouranium(VI) dibromide and iodide hydrates, UO(2)Br(2)x3H(2)O (1), [UO(2)Br(2)(OH(2))(2)](2) (2), and UO(2)I(2)x2H(2)Ox4Et(2)O (3), are reported. Moreover, adducts of UO(2)I(2) and UO(2)Br(2) with large, bulky OP(NMe(2))(3) and OPPh(3) ligands such as UO(2)I(2)(OP(NMe(2))(3))(2) (4), UO(2)Br(2)(OP(NMe(2))(3))(2) (5), and UO(2)I(2)(OPPh(3))(2)(6) are discussed. The structures of the following compounds were determined using single-crystal X-ray diffraction techniques: (1) monoclinic, P2(1)/c, a = 9.7376(8) A, b = 6.5471(5) A, c = 12.817(1) A, beta = 94.104(1) degrees , V = 815.0(1) A(3), Z = 4; (2) monoclinic, P2(1)/c, a = 6.0568(7) A, b = 10.5117(9) A, c = 10.362(1) A, beta = 99.62(1) degrees , V = 650.5(1) A(3), Z = 2; (4) tetragonal, P4(1)2(1)2, a = 10.6519(3) A, b = 10.6519(3) A, c = 24.0758(6) A, V = 2731.7(1) A(3), Z = 4; (5) tetragonal, P4(1)2(1)2, a = 10.4645(1) A, b = 10.4645(1) A, c = 23.7805(3) A, V = 2604.10(5) A(3), Z = 4, and (6) monoclinic, P2(1)/c, a = 9.6543(1) A, b = 18.8968(3) A, c = 10.9042(2) A, beta =115.2134(5) degrees , V = 1783.01(5) A(3), Z = 2. Whereas 1 and 2 are the first UO(2)Br(2) hydrates and the last missing members of the UO(2)X(2) hydrate (X = Cl --> I) series to be structurally characterized, 4 and 6 contain room-temperature stable U(VI)-I bonds with 4 being the first structurally characterized room temperature stable U(VI)-I compound which can be conveniently prepared on a gram scale in quantitative yield. The synthesis and characterization of 5 using an analogous halogen exchange reaction to that used for the preparation of 4 is also reported.  相似文献   

19.
Hydride complexes IrHCl(2)(PiPr(3))P(2) (1) and IrHCl(2)P(3) (2) [P = P(OEt)(3) and PPh(OEt)(2)] were prepared by allowing IrHCl(2)(PiPr(3))(2) to react with phosphite in refluxing benzene or toluene. Treatment of IrHCl(2)P(3), first with HBF(4).Et(2)O and then with an excess of ArCH(2)N(3), afforded benzyl azide complexes [IrCl(2)(eta(1)-N(3)CH(2)Ar)P(3)]BPh(4) (3, 4) [Ar = C(6)H(5), 4-CH(3)C(6)H(4); P = P(OEt)(3), PPh(OEt)(2)]. Azide complexes reacted in CH(2)Cl(2) solution, leading to the imine derivative [IrCl(2){eta(1)-NH=C(H)C(6)H(5)}P(3)]BPh(4) (5). The complexes were characterized by spectroscopy and X-ray crystal structure determination of [IrCl(2)(eta(1)-N(3)CH(2)C(6)H(5)){P(OEt)(3)}(3)]BPh(4) (3a) and [IrCl(2){eta(1)-NH=C(H)C(6)H(5)}{P(OEt)(3)}(3)]BPh(4) (5a). Both solid-state structure and (15)N NMR data indicate that the azide is coordinated through the substituted Ngamma [Ir]-Ngamma(CH(2)Ar)NNalpha nitrogen atom.  相似文献   

20.
The bis(imido) uranium(VI)-C(5)H(5) and -C(5)Me(5) complexes (C(5)H(5))(2)U(N(t)Bu)(2), (C(5)Me(5))(2)U(N(t)Bu)(2), (C(5)H(5))U(N(t)Bu)(2)(I)(dmpe), and (C(5)H(5))(2)U(N(t)Bu)(2)(dmpe) can be synthesized from reactions between U(N(t)Bu)(2)(I)(2)(L)(x) (L=THF, x=2; L=dmpe, x=1) and Na(C(5)R(5)) (R=H, Me); these complexes represent the first structurally characterized C(5)H(5)-compounds of uranium(VI) and they further highlight the differences between UO(2)(2+) and the bis(imido) fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号